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Abstract. Data synthesis is a data confidentiality method which is ap-

plied to microdata to prevent leakage of sensitive information about re-

spondents. Instead of publishing real data, data synthesis produces an ar-

tificial dataset that does not contain the real records of respondents. This,

in particular, offers significant protection against reidentification attacks.

However, effective data synthesis requires retention of the key statistical

properties of (and respecting the multiple utilities of) the original data.

In previous work, we demonstrated the value of matrix genetic algo-

rithms in data synthesis [4]. The current paper compares three crossover

methods within a matrix GA: parallelised (two-point) crossover, matrix

crossover, and parametric uniform crossover. The crossover methods are

applied to three different datasets and are compared on the basis of how

well they reproduce the relationships between variables in the original

datasets.

Keywords: Genetic algorithms, Data synthesis, Data privacy

1 Introduction

Published data are provided in many formats, although the underlying data are

often microdata collected from some population [5]. Confidentiality protection

techniques for microdata attempt to camouflage sensitive information in the

original data while retaining its statistical properties for analysts. Data synthesis

is a protection technique that produces a synthetic dataset that is designed to
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preserve the same statistical properties as the original data and provide sufficient

variables to allow proper multivariate analyses [1].

The quality of synthetic data is strongly dependent on the design of the

synthetic data generator [7]. Properties that are not explicitly included in the

generator will not be present in the synthetic dataset (unless they are structurally

or statistically related to properties that are, and therefore emerge from the

synthesis process). Unforeseen analysis on fully synthetic data may therefore

lead to different results from the same analysis on the original data [8].

In this paper we use Genetic Algorithms(GAs) to generate synthetic data.

GAs are iterative optimising algorithms that simulate the process of natural

evolution. They comprise of three main operators: selection, crossover and mu-

tation. A group of candidate solutions are specified (the initial population). The

fitnesses of these candidates are calculated and a selection operator selects a

subset of the fitter candidates which are used to generate a new population. In

crossover some pairs of these selected candidates are combined (using a variety

of methods) to produce new candidate solutions. Some candidates are then sub-

jected to mutation – random changes that will produce changes in fitness. After

crossover and mutation we have the new population / generation. The process is

repeated a number of times in order to (hopefully) generate fitter solutions than

those in the initial population. Crossover and mutation rates can be varied from

one iteration to the next, and tuning of these parameters can greatly influence

performance.

GAs have been proposed as a potential method to protect respondents’ from

disclosures from published data. For example, Navarro-Arribas and Torra [9]

mentioned that data protection could be treated as an optimisation problem with

conflicting objectives and cite GAs as one approach to delivering this. Reasons for

using GAs to produce synthetic data are: (i) they are designed to solve problems

that have no observable solution space. The a priori knowledge required for

setting up the initial population is minimal. (ii) GAs are interruptable so do not

require complete a priori knowledge to set up objectives and, most crucially, (iii)

GAs work well at optimising across competing constraints and therefore could, if

well designed, have advantages over orthodox statistical model based synthesizers

in: ameliorating overfitting, generating emergent properties and accommodating

unforeseen analyses.

Matrix GAs are believed to capable of representing and solving more com-

plex problem structures than the more orthodox bitstring GAs [12] [14] [15].

Although GAs have been used in various optimisation problems, the exploration

of applications for matrix GAs has been limited. However, given that micro-
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data are essentially matrices the production of synthetic microdata seems an

obvious application. In previous work we have evaluated the potential for ma-

trix GAs with promising initial results [3] [4]. The current paper explores the

performance of three different crossover methods for matrix GAs in producing

synthetic data. We consider three datasets, with different data structures, and

sampled from different survey populations.

Note that in this initial phase of this research, we are concerned only with

optimising the utility of the synthesised data and not with the residual disclosure

risk. The rationale for this is twofold: (i) optimising the utility of a synthetic

dataset represents a difficult problem by itself and adding in the contrary con-

straint of disclosure control will introduce further complexity, and (ii) of the two

elements the utility problem is the more significant for synthetic data; if this

cannot be solved the efficiency of the risk optimisation will be irrelevant. Under-

standing the properties of the utility optimisation problem before introducing

the complexity disclosure control as an objective is therefore the appropriate

research strategy.

1.1 Microdata and Contingency Tables

A microdata set for n cases and m variables is usually represented as an n by

m matrix indexed i∈{1, . . ., n} and j∈{1, . . .,m}. Here we use Y to denote and

original dataset and its synthetic version is denoted as X. X shares the same

structure as Y as illustrated in Fig. 1.

y11 y12 ... y1m
y21 y22 ... y2m
y31 y32 ... y3m
y41 y42 ... y4m

...
...

...
...

yn1 yn2 ... ynm





x11 x12 ... x1m

x21 x22 ... x2m

x31 x32 ... x3m

x41 x42 ... x4m

...
...

...
...

xn1 xn2 ... xnm




Fig. 1. Microdata Y and its synthetic version X

For categorical variables the same information can be encoded in a con-

tingency table, which captures the between-variate structure of the candidate.

Assume our variables take values in finite sets Ij so that I = ×
j∈[1..m]

Ij denotes

the possible configurations of the variables. Then a contingency table is an m-

dimensional table containing a count for each member of I. For example, if we
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denote the jth column of a microdata set Y as Y:,j , then the 2-dimensional con-

tingency table constructed from distinct columns Y:,j and Y:,k is CT (Y:,j , Y:,k)

with entries nr,c is,

nr,c =

n∑
i=1

[Yi,j = (Ij)r ∧ Yi,k = (Ik)c] (1)

where the square brackets are Iverson brackets and the levels of Ij and Ik are

indexed r ∈ [1..|Ij |] and c ∈ [1..|Ik|] respectively.

1.2 Objectives

Respecting variable associations in the original data is an important aspect of

producing high quality synthetic data. Thus, objective functions are designed

based on the differences between synthetic (contingency) tables and original ta-

bles in low dimensions. A measure of the difference between a pair of contingency

tables is the Jensen-Shannon distance DJS between their normalised (to sum to

1) counterparts4. Suppose P and Q are two discrete probability distributions,

then DJS(P ||Q) is given by:

DJS(P ||Q) = (
1

2
DKL(P ||M) +

1

2
DKL(Q||M))

1
2 (2)

where M = 1
2 (P +Q) and DKL is the well-known Kullback-Leibler divergence.

So our distance measure for a pair of 2-dimensional contingency tables is

defined as:

∆(X,Y, {j, k}) = DJS(
1

n
CT (X:,j , X:,k)|| 1

n
CT (Y:,j , Y:,k)) (3)

Our first objective function is the mean of these distances over all pairs of

variables:

F1(X,Y ) =

(
m

2

)−1 m−1∑
j=1

m∑
k=j+1

∆(X,Y, {j, k}) (4)

4 Regarding the choice of divergence measure. The Kullback-Leibler divergence cannot

be used directly because of the requirement for absolute continuity. Aside from that

constraint there was no prior compelling reason for picking any specific measure, and

there is no specific empirical work to guide us. The Jensen-Shannon distance was

chosen mainly on the basis that it is a true metric, unlike e.g. the Jensen-Shannon

divergence. The impact of using alternative measures is another area which future

research could explore
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Analogous measures are also considered for all 3-dimensional and all 4-

dimensional contingency tables. So our other two objectives are defined as:5

F2(X,Y ) =

(
m

3

)−1 ∑
S∈P3([1..m])

∆(X,Y, S) (5)

F3(X,Y ) =

(
m

4

)−1 ∑
S∈P4([1..m])

∆(X,Y, S) (6)

where Pk(Z) denotes the members of the powerset of Z of size K.

The fitness of each candidate is calculated by the Euclidean distance from

the synthetic to the original data in the space delineated by the three objective

functions. The fitness value is normalized to the range [0, 1] by dividing by
√

3.6

So our overall objective function is:

F =
√

3
−1√

(F1(X,Y )2 + F2(X,Y )2 + F3(X,Y )2 (7)

2 Crossover Methods

A crossover operator produces variation in a GA population. The operators

considered here will change a pair of individuals by swapping randomly selected

sub-matrices. In the case of uniform crossover these sub-matrices will necessarily

have dimension 1× 1 and we will essentially be swapping individual elements of

the matrices.

The three crossover methods presented here have been used previously in

various application areas, but not usually compared and certainly not in the con-

text of synthetic data generation. Two of them use the mechanism of two-point

crossover where not all sub-matrices (or elements) have an equal probability of

being swapped (positional bias). The third operator, uniform crossover, does

not suffer from positional bias and is included in order to examine the impact

of positional bias on the effectiveness of matrix GA data synthesizers.

Parallelised Crossover The design of parallelised crossover is based on a two-

point crossover method from linear GAs, which swaps the elements between two

randomly selected crossover points a and b between a pair of bitstrings. Since

5 Clearly this is not a complete set of possible objectives but these are probably

necessary to produce reasonable synthetic categorical data and provide sufficient

complexity for our crossover experiments
6 So on this scale 0 is the best fitness possible and 1 is the worst
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solutions that GAs generate are operationally independent (in that a change in

one individual has no direct effect on another), crossover and mutation can be

parallelised [2]. Parallelised crossover occurs on a single variable and therefore

it is possible to have m sub-processors working separately on different variables

in the generator. The generator works by randomly choosing a sub-matrix from

within a single data column and swapping with the corresponding sub-matrix in

the paired candidate. Fig. 2 illustrates parallelised crossover between a pair of

candidates X1 and X2:

x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nm





x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm





x1
11 x1

12 ... x1
1m

x2
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x1
41 x2

42 ... x2
4m

...
...

...
...

x1
n1 x1

n2 ... x2
nm





x2
11 x2

12 ... x2
1m

x1
21 x2

22 ... x2
2m

x2
31 x1

32 ... x1
3m

x2
41 x1

42 ... x1
4m

...
...

...
...

x2
n1 x2

n2 ... x1
nm




Fig. 2. X1 and X2 in parallelized crossover
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x1
11 x1

12 ... x1
1m

x1
21 x1

22 ... x1
2m

x1
31 x1

32 ... x1
3m

x1
41 x1

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
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



x2
11 x2

12 ... x2
1m

x2
21 x2

22 ... x2
2m

x2
31 x2

32 ... x2
3m

x2
41 x2

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm





x2
11 x2

12 ... x1
1m

x2
21 x2

22 ... x1
2m

x2
31 x2

32 ... x1
3m

x2
41 x2

42 ... x1
4m

...
...

...
...

x1
n1 x1

n2 ... x1
nk





x1
11 x1

12 ... x2
1m

x1
21 x1

22 ... x2
2m

x1
31 x1

32 ... x2
3m

x1
41 x1

42 ... x2
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm




Fig. 3. X1 and X2 in Matrix crossover

Matrix Crossover Matrix crossover was first proposed by Wallet et al. [15].

Unlike parallelised crossover, matrix crossover generates crossover points for the

rows as well as columns. Thus it swaps elements from a randomly generated

sub-matrix (as opposed to the column vectors swapped in parallelised crossover).

Fig. 3 illustrates matrix crossover.

Parametric Uniform Crossover (PUC) In PUC, the probability of crossover

being applied to each element (1 × 1 sub-matrix) of the given candidate is de-

termined by a user-specified parameter P0. Fig. 4 illustrates PUC.
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x1
11 x2

12 ... x2
1m

x2
21 x1

22 ... x1
2m

x1
31 x2

32 ... x2
3m

x2
41 x2

42 ... x1
4m

...
...

...
...

x2
n1 x2

n2 ... x2
nm




Fig. 4. X1 and X2 in PUC

2.1 Positional Bias

Both parallelised crossover and matrix crossover are based on the idea of two-

point crossover. In parallelised crossover, the element with row index i will be

swapped if, and only if, one of the selection points has index not greater than

i while the other has index greater than i. Thus the swap probability is the

hypergeometric probability:

P (min (a, b) ≤ i < max (a, b)) = i(n− i+ 1)

(
n+ 1

2

)−1
(8)

where a and b are the indices of a pair of (distinct) randomly chosen crossover

points.

It is trivial to show that this is a montone increasing function of i where

i < n
2 and a monotone decreasing function of i where i > n

2 .

For matrix crossover we also select a pair of crossover points for the columns

and the probability of an element with index (i, j) being swapped is a product of

hypergeometric probabilities. PUC, on the other hand contains no positional bias

and it is therefore useful to provide us with an implicit evaluation of the effect

of positional bias on the optimising ability of the matrix GA data synthesizer.
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3 Empirical Study

3.1 Design

The three crossover methods were compared using three datasets that were each

sampled from a different social survey. All three datasets contain 10 variables

and 1000 cases. Dataset 1 was sampled from the Crime Survey for England and

Wales, 2015-2016 [10] and has 10 binary variables. Dataset 2 was sampled from

European Union Statistics on Income and Living Conditions, 2009 [11]. It has 6

binary variables, 1 three-category variable and 3 four-category variables. Dataset

3 was sampled from the Citizenship Survey, 2010-2011 [6]. It contains 1000 cases

and 10 variables including 4 binary variables, 2 four-category variables, 2 six-

category variables, 1 nine-category variable and 1 eleven-category variable.

For each dataset there was a fixed initial population of 100 candidates that

was generated by independently sampling (with replacement) from the univariate

distributions of the original data. Deterministic tournament selection7 was used

to select candidates with tournament size t = 2.

Synthetic data were generated using GAs with two distinct crossover rates.

Matrix crossover used rates of 1.0 and 0.7. The corresponding crossover rates for

parallelised crossover and PUC were chosen so that the probability of swapping

individual elements was similar.

The synthetic data generator used a low mutation rate (pm = 0.01) to reduce

the noise in the final results.8 Candidates chosen for mutation had a randomly

selected sub-matrix swapped with data independently sampled from the original

univariate distributions.

For each set of parameters we generated 10 synthetic populations. Each such

trial was run for 100 generations.

7 In generalised tournament selection, candidates are randomly selected into tourna-

ments of size t (with or without replacement). The probability that a candidate wins

the tournament and enters crossover is given by p(1 − p)r where p is a parameter

(such that 1/t < p ≤ 1) and r is the rank of the candidate’s fitness within the

tournament. In deterministic tournament selection p is set to 1.
8 Mutation is another important operator in GA that helps find more promising can-

didates from the solution space and reduces the risk of becoming caught in local

optima. However it can also reduce the fitness of a candidate. Here our focus is on

comparing crossover operators so we selected a low mutation rate to reduce the noise

in the final results. In future work will examine the relationship between the two

operators.
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Table 1. Fitness values of the initial population of each of the three test dataset

Fitness of Fixed Population (size=100) for each Data

Best fitness Mean s.d.

Data 1 0.0734 0.0800 0.0034

Data 2 0.2176 0.2259 0.0031

Data 3 0.2544 0.2610 0.0027

3.2 Experimental Results

Table 2 shows the means and standard deviations of the fittest solutions in the

final (100th) populations. The rightmost column shows the fitness of the best

individual that was generated over the 10 trials.

The generator used the objective function in Equation 7. The number of

individual contingency tables compared depends on the number of variables and

would increase substantially if we extended the measure to, say, 5-dimensional

tables. Table 2 shows that the fitness of candidates for Dataset 1 is always closer

to the original data compared with the other two no matter which crossover

operator is used, followed by Dataset 2 and Dataset 3. This is monotonic with

the complexity of the data structures of the three datasets. This issue will need

further exploration to establish how the degree of complexity affects the viability

of GA generated synthesis.

The experimental results also indicate that positional bias does impact the

effectiveness of matrix GA generator. All the best means and individuals after

100 generations for the three datasets are generated by the synthesizer with the

PUC operator that has p0 = 0.3818. The second best mean and individuals are

generated by the same synthesizer with p0 = 0.1911.

Moreover, there was a significant improvement on the initial population no

matter which crossover method was used. The increase of fitness (decrease in

distance from the original data) indicates that matrix GA is efficient in generat-

ing synthetic data with real-coded data or even more complex data structures.

Table 3 shows the mean improvement of the fitness of the population from the

beginning to the 100th generation over all trials.

4 Conclusions

Our experimental results indicate that PUC performs better than matrix and

parallelised crossover in producing synthetic data for all three datasets. This

is likely to be due to the lack of positional bias. Results also indicate that the
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Fig. 5. Box plots of final fitness values of the best individual for Dataset 1, 2 and 3 from

ten trials of matrix GA synthetic data generator using different crossover operators
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Table 2. Summary statistics from ten trials of matrix GA data synthesizers equipped

with three different operators: matrix crossover (MGA), parallelized crossover (PGA)

and PUC.

Crossover Crossover Data Best Fitness Value Best

Type Rate Mean s.d. Individual

MGA 1 Data 1 0.0564 0.0026 0.0517

Data 2 0.1887 0.0030 0.1818

Data 3 0.2319 0.0020 0.2281

0.7 Data 1 0.0579 0.0022 0.0541

Data 2 0.1958 0.0034 0.1889

Data 3 0.2375 0.0032 0.2340

PGA 0.5455 Data 1 0.0497 0.0022 0.0472

Data 2 0.1936 0.0038 0.1885

Data 3 0.2259 0.0019 0.2213

0.273 Data 1 0.0561 0.0015 0.0533

Data 2 0.1929 0.0041 0.1867

Data 3 0.2363 0.0025 0.2315

PUC 0.3818 Data 1 0.0393 0.0021 0.0362

Data 2 0.1450 0.0025 0.1408

Data 3 0.2060 0.0009 0.2048

0.1911 Data 1 0.0429 0.0022 0.0397

Data 2 0.1576 0.0038 0.1521

Data 3 0.2112 0.0020 0.2092

performance of matrix GA on synthetic data generation strongly depends on

the structure of data and the number of cases. For example, the optimisation

of Dataset 1 is the most effective because it has the simplest data structure

(containing only binary variables) compared to Dataset 2 and Dataset 3.

Beyond the issue of positional bias, the overall performance for all three

crossover operators in producing synthetic data is reasonable. All approaches

significantly improved the fitness of the 100 candidates from the initial popula-

tion over 100 generations.

Our future research will focus on testing the effectiveness and practicality of

the matrix GA generator by introducing adaptive crossover rates, more objec-

tives and larger datasets. A key element missing from these initial experiments

has been the assessment of disclosure risk. As outlined in the introduction, this

was a rational approach to isolate the difficult problem of optinmising utility.

However, a full GA data synthesiser should incorporate risk. Therefore, in fu-

ture work we will bring measures of disclosure risk into the GA framework. In
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Table 3. Mean fitness improvement over ten trials on the best fitness value of initial

population

On mean of the best fitness values over all trials

Data 1 0.0296

Data 2 0.0470

Data 3 0.0362

many ways this is when the GA approach will come into its own. The risk utility

trade-off is usually dealt with as a two step-process and optimisng both within

a single framework is likely to be more efficient.

Overall, these initial experiments using matrix GA generators to generate

synthetic data show that matrix GA is of interest for the problem of data syn-

thesis and for solving problems with higher-dimensional and complex structures

in general.
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