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Abstract. Entity resolution seeks to merge databases as to remove du-
plicate entries where unique identifiers are typically unknown. We re-
view modern blocking approaches for entity resolution, focusing on those
based upon locality sensitive hashing (LSH). First, we introduce k-means
locality sensitive hashing (KLSH), which is based upon the informa-
tion retrieval literature and clusters similar records into blocks using
a vector-space representation and projections. Second, we introduce a
subquadratic variant of LSH to the literature, known as Densified One
Permutation Hashing (DOPH). Third, we propose a weighted variant of
DOPH. We illustrate each method on an application to a subset of the
ongoing Syrian conflict, giving a discussion of each method.

1 Introduction

A commonly encountered problem in statistics, computer science, and machine
learning is merging noisy data sets that contain duplicated entities, which is
known as entity resolution (record linkage or de-duplication). Entity resolution
tasks are intrinsically difficult because they are quadratic in computational com-
plexity. In addition, for such tasks to be accurate, one often seeks models that
are robust to model-misspecification and also have low error rates (precision and
recall). These criteria are both difficult to satisfy, and have been at the core of
entity resolution research [4, 9, 10, 27].

One way of approaching the computational complexity barrier is by parti-
tioning records into “blocks” and treating records in different blocks as non-co-
referent a priori [4, 9]. There are several techniques for constructing a blocking
partition. The most basic method picks certain fields (e.g., geography, or gender
and year of birth) and places records in the same block if and only if they agree
on all such fields. This amounts to an a priori judgment that these fields are
error-free. This is known as traditional blocking, and is a deterministic scheme.
Unlike traditional blocking, probabilistic schemes such as locality sensitive hash-
ing (LSH) use all the fields of a record, and can be adjusted to ensure that blocks
are manageably small. For example, [26] introduced data structures for sorting
and fast approximate nearest-neighbor look-up within blocks produced by LSH.
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This approach is fast and has high recall (true positive rate), but suffers from
low precision (too many false positives). In addition, this approach is called pri-
vate if, after the blocking is performed, all candidate records pairs are compared
and classified into matches/non-matches using computationally intensive “pri-
vate” comparison and classification techniques, e.g., see [5].

LSH has been recently proposed as a way of blocking for entity resolution,
where one place similar records into bins or blocks. LSH methods are defined
by a type of similarity and a type of dimension reduction [1]. Recently, [25] pro-
posed clustering-based blocking schemes — k-means locality sensitive hashing
(KLSH), which is based upon the information retrieval literature and clusters
similar records into blocks using a vector-space representation and projections.
(While KLSH had been used before within the information retrieval literature,
this is the first known instance of its application to entity resolution [14]). [25]
showed that KLSH gave improvements over popular methods in the literature
such as traditional blocking, canopies [13], and k-nearest neighbors clustering.
In addition, [22] showed that minwise hashing based approaches are superior to
random projection based approaches when the data is very sparse and feature
poor. Furthermore, computational improvements can be gained by using the re-
cently proposed densification scheme known as densified one permutation hash-
ing (DOPH) [22, 23]. Specifically, the authors proposed an efficient substitute
for minwise hashing, which only requires one permutation (or one hash function)
for generating many different hash values needed for indexing. In short, the al-
gorithm is linear (or constant) in the tuning parameters, making this algorithm
very computationally efficient.

In this paper, we review traditional blocking methods that are deterministic,
and describe why such methods are not practical. We then review scalable LSH
methods for blocking. Specifically, we give two recent approaches an methods
from above that are scalable to large entity resolution data sets – KLSH and
DOPH. Since both methods are known to work well on toy examples, we il-
lustrate both algorithms on a real data set taken from a subset of the Syrian
conflict, which is likely to be more realistic of industrial sized data sets. We
illustrate evaluation metrics of all methods and the computational run time.

2 Blocking Methods

Blocking is a computational tool used in entity resolution that allows one to
place similar records into blocks or partitions using either a deterministic or
probabilistic mechanism. We first review traditional blocking methods, and then
review probabilistic blocking methods. We propose two probabilistic blocking
methods for large scale blocking methods based upon LSH.

2.1 Traditional Blocking

Traditional blocking requires domain knowledge to pick out highly reliable, if
not error-free, fields for blocking. While traditional blocking is intuitive and
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easy to implement, it has at least four drawbacks. The first one is that the
resulting blocks may still be so large that linkage within them is computationally
impractical. The second is that because blocks only consider selected fields, much
time may be wasted comparing records which happen to agree on those fields
but are otherwise radically different. The third is due to the fact that traditional
blocking methods are by nature deterministic, and thus, must be changed for
each application at hand. The fourth is that a deterministic method cannot be
guaranteed to be private. Given that traditional blocking is impractical for many
reasons, we refer readers to [25], and we focus instead on probabilistic types of
blocking, namely variants LSH.

2.2 Variants of Locality Sensitive Hashing

In this section, we first provide terminology, known as shingling, that is essential
for using LSH for blocking. Next, we describe how can one produce blocks using
k-means LSH (KLSH). Then we introduce the notation of LSH, and the linear
variant — Densified One Permutation Hashing (DOPH). Finally, we propose a
weighted variant of DOPH (weighted DOPH).

2.3 Shingling

In entity resolution tasks, each record can be represented as a string of textual
information. It is often convenient to represent each record instead by a “bag”,
“shingle” (or “multi-set”) of length-k contiguous sub-strings that it contains. In
this paper, we use a k-shingle (k-gram or k-token) based approach to transform
the records, and our representation of each record is a set, which consists of all
the k-contiguous characters occurring in record string.

As an illustration, for the record BAKER, TED, we separate it into a 2-gram
representation. The resulting set is the following:

BA, AK, KE, ER, ER, TE, ED.

For example, consider Sammy, Smith, whose 2-gram set representation is

SA, AM, MM, MY, MS, SM, MI, IT, TH.

We now have two records that have been transformed into a 2-gram representa-
tion. Thus, for every record (string) we obtain a set ⊂ U , where the universe U
is the set of all possible k-contiguous characters.

2.4 KLSH

We explore a simple random projection method, KLSH, where the similarity
between records is measured using the inner product of a bag-of-shingled vec-
tors that are weighted by their inverse document frequency. We first construct a
k-shingle of a record by replacing the record by a bag (or multi-set) of length-k
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contiguous sub-strings that it contains. After the shingles are created, the dimen-
sionality of the bag-of-shingled vectors is then reduced using random projections
and by clustering the low-dimensional projected vectors via the k-means algo-
rithm. That is, the mean number of records per cluster is controlled by n/c,
where n is the total number of records and c is the number of block-clusters.

2.5 Locality Sensitive Hashing

We now turn to LSH, which is used in computer science and database engineering
as a way of rapidly finding approximate nearest neighbors [6, 11]. Specifically,
the variant of LSH that we utilize is scalable to large databases, and allows for
similarity based sampling of entities in a subquadratic amount of time.

In LSH, a hash function is defined as y = h(x), where y is the hash code
and h(·) the hash function. A hash table is a data structure that is composed
of buckets (not to be confused with blocks), each of which is indexed by a hash
code. Each reference item (record) x is placed into a bucket h(x).

More precisely, LSH is a family of function that map vectors to a discrete set,
namely, h : RD → {1, 2, · · · ,M}, where M is in finite range. Given this family
of functions, similar points (records) are likely to have the same hash value
compared to dissimilar points (records). The notion of similarity is specified
by comparing two vectors of points (records), x and y. We will denote a general
notion of similarity by SIM(x, y). In this paper, we only require a relaxed version
LSH, and we define this below. For a complete review of LSH, we refer to [20].
Formally, a LSH is defined by the following definition below:

Definition 1. (Locality Sensitive Hashing (LSH)) Let x1, x2, y1, y2 ∈ RD
and suppose h is chosen uniformly from a family H. Given a similarity metric,
SIM(x, y), H is locality sensitive if SIM(x1, x2) ≥ Sim(y2, y3) then PrH(h(x1) =
h(x2)) ≥ PrH(h(y1) = h(y2)), where PrH is the probability over the uniform
sampling of h.

2.5.1 Minhashing One of the most popular forms of LSH is minhashing [2],
which has two key properties — a type of similarity and a type of dimension
reduction. The type of similarity used is the Jaccard similarity and the type of
dimension reduction is known as the minwise hash, which we now define.

Let {0, 1}D denote the set of all binary D dimensional vectors, while RD
refers to the set of all D dimensional vectors (of records). Note that records
can be represented as a binary vector (or set) representation via a shingling
representation More specifically, given two record sets (or equivalently binary
vectors) x, y ∈ {0, 1}D, the Jaccard similarity between x, y ∈ {0, 1}D is J =
|x ∩ y|
|x ∪ y|

, where | · | is the cardinality of the set.

More specifically, the minwise hashing family applies a random permutation
π, on the given set S, and stores only the minimum value after the permutation
mapping, known as the minhash. Formally, the minhash is defined as hminπ (S) =
min(π(S)), where h(·) is a hash function.
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Given two sets S1 and S2, it can be easily shown that

Prπ(hminπ (S1) = hminπ (S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

, (1)

where the probability is over uniform sampling of π. It follows from Equation 1
that minhashing is a LSH family for the Jaccard similarity.1

2.6 DOPH

In this section, we introduce the linear variant of LSH, known as DOPH. Let
K be the number of hash functions and let L be the number of hash tables.
A (K,L) parameterized blocking scheme requires K × L hash computations
per record. For a single record, this requires storing and processing hundreds
(or even thousands) of very large permutations. This in turn requires hundreds
or thousands of passes over each record. Thus, traditional minwise hashing is
prohibitively expensive for large or moderately sized data sets. In order to cross-
validate the optimal (K,L) tuning parameters, we need multiple independent
runs of the (K,L) parameterized blocking scheme. This expensive computation
is a major computational concern. To avoid this computational issue, we can use
one permutation of the hash function, where k = K ×L minhashes are made in
one single pass over the data [22, 23].

Due to sparsity of data vectors (from shingling), empty blocks (in the hash
tables) are possible and destroy LSH’s essential property [20]. To restore this,
we rotate the values of non-empty buckets and assign a number to each of the
empty buckets. Our KL hashed values are simply the final assigned values in
each of the KL buckets. The final values were shown to satisfy Equation 1, for
any S1, S2, as shown in [22, 23].

2.7 Weighted DOPH

Minhashing, however, only uses the binary information and ignores the weights
(or values) of the components, which is important for entity resolution problems
due to the unbalanced nature of the data (small amount of duplicate records).
This is the reason why we observe slightly better performance for synthetic data
of LSH methods used in [25], one of which is based upon random projections. To
explore this more broadly, we examine the power of minwise hashing for entity
resolution, a situation where the data is quite unbalanced, while simultaneously
utilizing the weighting of various components.

Suppose now x, y are non-negative vectors. For our problem, we are only
interested in non-negative vectors because shingle based representations are al-
ways non-negative. We utilize the generalization of Jaccard similarity for real

1 In this paper, we utilize a shingling based approach, and thus, our representation of
each record is likely to be very sparse. Moreover, [24] showed that minhashing based
approaches are superior compared to random projection based approaches for very
sparse data sets.
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valued vectors in RD, Unlike the minhash, this variant is sensitive to the weights
of the components, and is defined as

Jw =

∑
i min{xi, yi}∑
i max{xi, yi}

= 1− ‖x− y‖1∑
i max{xi, yi}

, (2)

where || · ||1 represents the `1 norm. Consistent weighted sampling [3, 7, 8, 12] is
used for hashing the weighted Jaccard similarity Jw. In our application to the
subset of the Syrian dataset, we find minhash and weighted minhash give similar
error rates, which can be seen in §4.

With DOPH, the traditional minwise hashing scheme is linear or constant
in the tuning parameters. For the weighted version of minhashing, we propose a
different way of generating hash values for weighted Jaccard similarity, similar
to that of [3, 7]. As a result, we obtain the fast and practical one pass hashing
scheme for generating many different hash values with weights, analogous to
DOPH for the unweighted case. Overall, we require only one scan of the record
and only one permutation.

Given any two vectors x, y ∈ RD as the shingling representation, we seek hash
functions h(·), such that the collision probability between two hash functions is
small. More specifically, this means that

Pr(h(x) = h(y)) =

∑
i min{xi, yi}∑
i max{xi, yi}

. (3)

Let δ be a quantity such that all components of any vector xi = Ixi δ for some
integer Ixi .2 Let the maximum possible component xi for any record be x and
let M be an integer such that xi = Mδ. Thus, δ and M always exist for finitely
bounded data sets over floating points.

Consider the transformation T : RD → {0, 1}M×D, where for T (x) we expand
each component xi = Iδ to M dimensions and with the first I dimensions have
value 1 and the rest value 0.

Observe that for vectors x and y, T (x) and T (y) are binary vectors and

|T (x) ∩ T (y)|
|T (x) ∪ T (y)|

=

∑
i min{Ixi , I

y
i }∑

i max{Ixi , I
y
i }

(4)

=

∑
i min{Ixi , I

y
i }δ∑

i max{Ixi , I
y
i }δ

=

∑
i min{xi, yi}∑
i max{xi, yi}

In other words, the usual resemblance (or Jaccard similarity) between the trans-
formed T (x) and T (y) is precisely the weighted Jaccard similarity between x and
y that we are interested in. Thus, we can simply use the DOPH method of [22, 23]
on T (x) to get an efficient LSH scheme for weighted Jaccard similarity defined
by Equation 4. The complexity here is O(KL +

∑
i Ii) for generating k hash

values, a factor improvement over O(k
∑
i Ii) without the densified scheme.

2 The assumption holds when dealing with floating point numbers for small enough δ.
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Often Ii is quite large (when shingling) and
∑
i Ii is large as well. When∑

i Ii is large, [7] give simple and accurate approximate hashes for weighted Jac-
card similarity. They divide all components xi by a reasonably big constant so
that xi ≤ 1 for all records x. After this normalization, since xi ≥ 0, for every
x, we generate another bag of word xS by sampling each xi with probability
xi ≤ 1. Then xS is a set (or binary vector) and for any two records x and y,
the resemblance between xS and yS sampled in this manner is a very accurate
approximation of the weighted Jaccard similarity between x and y. After ap-
plying the DOPH scheme to the shingled records, we generate k different hash
values of each record in time O(KL + d), where d is the number of shingles
contained in each record. This is a vast improvement over O(KL +

∑
i Ii). Al-

gorithm 1 summarizes our method for generating k different minhashes needed
for blocking.

Algorithm 1: Fast KL hashes

Data: record x,
Result: KL hash values for blocking
xS = φ;
forall xi > 0 do

xS ∪ i with probability proportional to xi;
end
return KL densified one permutation hashes (DOPH) of xS

3 Evaluation Metrics

We evaluate each of our hashing methods below using recall and reduction ratio
(RR). The recall measures how many of the actual true matching record pairs
have been correctly classified as matches. There are four possible classifications.
First, record pairs can be linked under both the truth and under the estimate,
which we refer to as correct links (CL). Second, record pairs can be linked under
the truth but not linked under the estimate, which are called false negatives
(FN). Third, record pairs can be not linked under the truth but linked under the
estimate, which are called false positives (FP). Fourth and finally, record pairs
can be not linked under the truth and also not linked under the estimate, which
we refer to as correct non-links (CNL). The vast majority of record pairs are
classified as correct non-links in most practical settings. Then the true number
links is CL + FN, while the estimated number of links is CL + FP. The usual
definitions of false negative rate and false positive rate are

FNR =
FN

CL+FN
, FDR =

FP

CL+FP
,
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where by convention we take FDR = 0 if its numerator and denominator are
both zero, i.e., if there are no estimated links. The recall is defined to be

recall = 1− FNR.

The precision is defined to be

precision = 1− FDR.3

The reduction ratio (RR) is defined as

RR = 1− sM + sN
nM + nN

,

where nM and nN are the total of matched and non-matched records and the
number of true matched and true non-matched candidate record pairs generated
by an indexing technique is denoted with sM + sN ≤ nM + nN. The RR pro-
vides information about how many candidate record pairs were generated by an
indexing technique compared to all possible record pairs, without assessing the
quality of these candidate record pairs. We also evaluate the methods using the
precision, where precision calculates the proportion of how many of the classified
matches (true positives + false positives) have been correctly classified as true
matches (true positives). It thus measures how precise a classifier is in classifying
true matches. This measure is useful if we wish to use hashing based approaches
for entity resolution, however, as we show, we are not able to achieve both a high
precision and recall (see §4). It’s most important for a blocking method to have
a high RR and recall because the entity resolution task can correct for potential
problems that are represented with a low precision. On the other hand, the error
summarized by the recall cannot be improved by an entity resolution task.

4 Application

We test the two blocking approaches on a subset of the ongoing Syrian conflict,
where via the Human Rights Data Analysis Group (HRDAG), we have access
to four databases from the Syrian conflict which cover roughly the same period,
namely March 2011 – April 2014. In this section, we apply LSH based methods
to the subset of the Syrian dataset. (We do not consider any methods in the
literature that performed worse than KLSH in terms of RR and recall. See
[21] for further details and experiments on traditional and other probabilistic
blocking schemes.)

3 Note that the precision for a blocking procedure is not expected to be high since
we are only placing similar pair in the same block (not not fully running an entity
resolution procedure or de-duplication procedure, which would try and maximize
both the recall and the precision).
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4.1 The Syrian Data

The four data sources consist of the Violation Documentation Centre (VDC),
Syrian Center for Statistics and Research (CSR-SY), Syrian Network for Human
Rights (SNHR), and Syria Shuhada website (SS). Each database lists a different
number of recorded victims killed in the Syrian conflict, along with available
identifying information including full Arabic name, date of death, death location,
and gender. Since the above information is collected indirectly, such as through
friends and religious leaders, or traditional media resources, it comes with many
challenges. For example, the data set contains natural biases, spelling errors,
missing values in addition to duplication of those killed in the conflict. The
ambiguities in Arabic names make the situation more challenging as there can
be a large textual difference between the full and short names in Arabic. Such
ambiguities and lack of additional information make blocking on this data set
considerably challenging [19]. Owing to the significance of the problem, HRDAG
has provided labels for a large subset of the data set. More specifically, five
different human experts from the HRDAG manually reviewed pairs of records in
the four data sets, classifying them as matches if referred to the same entity and
non-matches otherwise. (More information regarding the Syrian data set can be
found in Appendix A).

4.2 KLSH applied to Syrian data

We first apply KLSH to the subset of the Syrian data set, which greatly contrasts
the empirical studies shown in [25]. The parameters to be set for KLSH are the
number of random projections (p) and the number of clusters to output (k).
Using this k-means approach to blocking, the mean number of records within a
cluster can be fixed.

Figure 1 (left panel) displays the results of KLSH clustering applied on the
subset of the Syrian database, where we plot the recall versus the total number
of blocks. We set the number of random projections to be p = 20 and allow the
shingles to vary from k = 1, 2, 3, 4. This figure shows that a 1-shingle always
achieves the highest recall. We notice that using a 1-shingle, a block size of 100,
the recall is 0.60, meaning that 40% of the time the same two records are split
across blocks.

4.3 DOPH applied to Syrian data

Due to the poor results achieved by KLSH for the Syrian data set, we apply
minhashing using both the unweighted and weighted DOPH algorithm to the full
Syrian database using shingles 2—5. We illustrate that regardless of the number
of shingles used, the recall and RR are close to 1 as illustrated in Figure 2.
Furthermore, using unweighted DOPH, we see that a shingle of three overall is
most stable in having a recall and RR close to 0.99 as illustrated in Figure 3.
Using weighted DOPH, we see that a shingle of two or three overall is most stable
in having a recall and RR close to 0.99. In terms of computational run time, we
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Fig. 1. Left: KLSH on subset of Syria database (20,000 records) using p=20. Right:
KLSH on entire Syrian database using p=20 and k=1. One can see that the recall
is very poor compared with previous approaches applied using KLSH, and thus, the
method is not suitable for blocking on this particular data set.

note that each individual run takes 10 minutes on the full Syrian dataset and
100 GB of RAM. We contrast this with the other blocking runs that on 20,000
records from Syria take many hours or 1-2 days (or a week) and return a recall
and RR that is unacceptable for entity resolution tasks.

5 Discussion

We have reviewed two modern approaches for blocking, namely KLSH and
DOPH and applied both to a subset of the Syrian conflict. We find that while
KLSH has been able to handle data sets with low noise and distortions, it is not
able to achieve a high recall on the Syrian data set, and thus, is not a suitable for
entity resoultion for data sets that have similar levels of noise as in the Syrian
data set. On the other hand, DOPH performs well given the sparsity and noisy
levels on the observed data at hand, and appears to be an excellent, stable, and
scalable choice for the blocking step in an entity resolution task. This merits
further investigations with scalable variants of LSH for entity resolution tasks.
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Fig. 2. For shingles 2–5, we plot the RR versus the recall. Overall, we see the best
behavior for a shingle of 3, where the RR and recall can be reached at 0.98 and 1,
respectively. We allow L and K to vary on a grid here. L varies from 100–1000 by steps
of 100 and K takes values 15,18,20,23,25,28,30,32,35.
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Fig. 3. For shingles 2–5, we plot the RR versus the recall. Overall, we see the best
behavior for a shingle of 2 or 3, where the RR and recall can be reached at 0.98 and
1, respectively. We allow L and K to vary on a grid here. L varies from 100–1000 by
steps of 100 and K takes values 15,18,20,23,25,28,30,32,35.



Bibliography

[1] Broder, A. Z. (1997). On the resemblance and containment of documents. In
Compression and Complexity of Sequences 1997. Proceedings. IEEE, 21–29.

[2] Broder, A. Z. (1997). On the resemblance and containment of documents. In
the Compression and Complexity of Sequences. Positano, Italy, 21–29.

[3] Charikar, M., Chen, K. and Farach-Colton, M. (2002). Finding frequent
items in data streams. In Automata, Languages and Programming. Springer, 693–
703.

[4] Christen, P. (2012). A survey of indexing techniques for scalable record linkage
and deduplication. IEEE Transactions on Knowledge and Data Engineering, 24
1537–1555.

[5] Christen, P., Gayler, R. and Hawking, D. (2009). Similarity-aware indexing
for real-time entity resolution. In Proceedings of the 18th ACM Conference on
Information and Knowledge Management. 1565–1568.

[6] Gionis, A., Indyk, P., Motwani, R. et al. (1999). Similarity search in high
dimensions via hashing. In Very Large Data Bases (VLDB), vol. 99. 518–529.

[7] Gollapudi, S. and Panigrahy, R. (2006). Exploiting asymmetry in hierarchical
topic extraction. In Proceedings of the 15th ACM international conference on
Information and knowledge management. ACM, 475–482.

[8] Haeupler, B., Manasse, M. and Talwar, K. (2014). Consistent weighted sam-
pling made fast, small, and easy. Tech. rep., arXiv:1410.4266.

[9] Herzog, T., Scheuren, F. and Winkler, W. (2007). Data Quality and Record
Linkage Techniques. Springer, New York.

[10] Herzog, T., Scheuren, F. and Winkler, W. (2010). Record linkage. Wiley
Interdisciplinary Reviews: Computational Statistics, 2 DOI: 10.1002/wics.108.

[11] Indyk, P. and Motwani, R. (1998). Approximate nearest neighbors: Towards
removing the curse of dimensionality. In STOC. Dallas, TX, 604–613.

[12] Ioffe, S. (2010). Improved consistent sampling, weighted minhash and L1 sketch-
ing. In ICDM. Sydney, AU, 246–255.

[13] McCallum, A., Nigam, K. and Ungar, L. H. (2000). Efficient clustering of
high-dimensional data sets with application to reference matching. In Proceedings
of the sixth ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 169–178.
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A Syrian Data Set

In this section, we provide a more detailed description about the Syrian data set.
As already mentioned, via collaboration with the Human Rights Data Analysis
Group (HRDAG), we have access to four databases. They come from the Vio-
lation Documentation Centre (VDC), Syrian Center for Statistics and Research
(CSR-SY), Syrian Network for Human Rights (SNHR), and Syria Shuhada web-
site (SS). Each database lists each victim killed in the Syrian conflict, along with
identifying information about each person (see [18] for further details).

Data collection by these organizations is carried out in a variety of ways.
Three of the groups (VDC, CSR-SY, and SNHR) have trusted networks on the
ground in Syria. These networks collect as much information as possible about
the victims. For example, information is collected through direct community
contacts. Sometimes information comes from a victim’s friends or family mem-
bers. Other times, information comes from religious leaders, hospitals, or morgue
records. These networks also verify information collected via social and tradi-
tional media sources. The fourth source, SS, aggregates records from multiple
other sources, including NGOs and social and traditional media sources (see
http://syrianshuhada.com/ for information about specific sources).

These lists, despite being products of extremely careful, systematic data col-
lection, are not probabilistic samples [15–17, 19]. Thus, these lists cannot be
assumed to represent the underlying population of all victims of conflict vio-
lence. Records collected by each source are subject to biases, stemming from a
number of potential causes, including a group’s relationship within a community,
resource availability, and the current security situation.

A.1 Syrian Handmatched Data Set

We describe how HRDAG’s training data on the Syrian data set was created,
which we use in our paper.

First, all documented deaths recorded by any of the documentation groups
were concatenated together into a single list. From this list, records were broadly
grouped according to governorate and year. In other words, all killings recorded
in Homs in 2011 were examined as a group, looking for records with similar
names and dates.

Next, several experts review these “blocks”, sometimes organized as pairs for
comparison and other times organized as entire spreadsheets for review. These
experts determine whether pairs or groups of records refer to the same individ-
ual victim or not. Pairs or groups of records determined to refer to the same
individual are assigned to the same “match group.” All of the records contribut-
ing to a single “match group” are then combined into a single record. This new
single record is then again examined as a pair or group with other records, in an
iterative process.

For example, two records with the same name, date, and location may be
identified as referring to the same individual, and combined into a single record.
In a second review process, it may be found that that record also matches the

http://syrianshuhada.com/
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name and location, but not date, of a third record. The third record may list a
date one week later than the two initial records, but still be determined to refer
to the same individual. In this second pass, information from this third record
will also be included in the single combined record.

When records are combined, the most precise information available from
each of the individual records is kept. If some records contain contradictory
information (for example, if records A and B record the victim as age 19 and
record C records age 20) the most frequently reported information is used (in this
case, age 19). If the same number of records report each piece of contradictory
information, a value from the contradictory set is randomly selected.

Three of the experts are native Arabic speakers; they review records with
the original Arabic content. Two of the experts review records translated into
English. These five experts review overlapping sets of records, meaning that some
records are evaluated by two, three, four, or all five of the experts. This makes it
possible to check the consistency of the reviewers, to ensure that they are each
reaching comparable decisions regarding whether two (or more) records refer to
the same individual or not.

After an initial round of clustering, subsets of these combined records were
then re-examined to identify previously missed groups of records that refer to
the same individual, particularly across years (e.g., records with dates of death
2011/12/31 and 2012/01/01 might refer to the same individual) and governorates
(e.g., records with neighboring locations of death might refer to the same indi-
vidual).
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