Skip to main content

Revisiting the Sparsification Technique in Kannan’s Embedding Attack on LWE

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11125))

Abstract

The Learning with Errors (LWE) problem is one of the most important computational problems in modern lattice-based cryptography. It can be viewed as a Bounded Distance Decoding (BDD) problem, which can be reduced to the unique Shortest Vector Problem (uSVP). The standard way to reduce BDD to uSVP is via Kannan’s embedding. At ICALP 2016, Bai, Stehlé, and Wen presented an improved theoretical reduction from BDD to uSVP which uses sparsification techniques. So far, the implications of this improved reduction and the use of sparsification to the hardness of LWE have not been studied. In this work, we consider a sparsified embedding attack on LWE which is deduced from the Bai–Stehlé–Wen reduction. In particular, we analyze its performance under the so-called 2016 estimate introduced at USENIX 2016 by Alkim, Ducas, Pöppelmann, and Schwabe and analyzed at ASIACRYPT 2017 by Albrecht, Göpfert, Virdia, and Wunderer. Our results suggest that in general the sparsified embedding attack does not yield a better attack on LWE in practice than Kannan’s embedding. However, for certain parameter sets and scenarios with a reasonable amount of computing clusters, the use of sparsification may be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - a new hope. In: Holz, T., Savage, S. (eds.) 25th USENIX Security Symposium, USENIX Security 16, pp. 327–343. USENIX Association (2016)

    Google Scholar 

  2. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 293–310. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12160-4_18

    Chapter  Google Scholar 

  3. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected cost of solving uSVP and applications to LWE. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 297–322. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_11

    Chapter  Google Scholar 

  4. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of Learning with Errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  Google Scholar 

  5. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_30

    Chapter  Google Scholar 

  6. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2

    Chapter  Google Scholar 

  7. Bai, S., Stehlé, D., Wen, W.: Improved reduction from the bounded distance decoding problem to the unique shortest vector problem in lattices. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016, Volume 55 of LIPIcs, pp. 76:1–76:12. Schloss Dagstuhl, July 2016

    Google Scholar 

  8. Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement homomorphe. Ph.D. thesis, ENS-Lyon, France (2013)

    Google Scholar 

  9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  10. Dadush, D., Kun, G.: Lattice sparsification and the approximate closest vector problem. In: Khanna, S. (ed.) 24th SODA, pp. 1088–1102. ACM-SIAM, January 2013

    Chapter  Google Scholar 

  11. Dadush, D., Regev, O., Stephens-Davidowitz, N.: On the closest vector problem with a distance guarantee. In: IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada, June 11–13, 2014, pp. 98–109. IEEE Computer Society (2014)

    Google Scholar 

  12. Gentry, C., Sahai, A., Waters, B.: homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  13. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  Google Scholar 

  14. Khot, S.: Hardness of approximating the shortest vector problem in high Lp norms. In: 44th FOCS, pp. 290–297. IEEE Computer Society Press, October 2003

    Google Scholar 

  15. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In: 45th FOCS, pp. 126–135. IEEE Computer Society Press, October 2004

    Google Scholar 

  16. Liu, Y.-K., Lyubashevsky, V., Micciancio, D.: On bounded distance decoding for general lattices. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM-2006. LNCS, vol. 4110, pp. 450–461. Springer, Heidelberg (2006). https://doi.org/10.1007/11830924_41

    Chapter  Google Scholar 

  17. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique shortest vectors, and the minimum distance problem. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_34

    Chapter  Google Scholar 

  18. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. Cryptology ePrint Archive, Report 2010/613 (2010). http://eprint.iacr.org/2010/613

  19. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  20. Liu, M., Wang, X., Guangwu, X., Zheng, X.: A note on BDD problems with \(\lambda \)\({}_{\text{2 }}\)-gap. Inf. Process. Lett. 114(1–2), 9–12 (2014)

    Article  MathSciNet  Google Scholar 

  21. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 140 (2009)

    Article  MathSciNet  Google Scholar 

  22. Stephens-Davidowitz, N.: Discrete Gaussian sampling reduces to CVP and SVP. In: Krauthgamer, R. (ed.) 27th SODA, pp. 1748–1764. ACM-SIAM, January 2016

    Google Scholar 

  23. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)

    Article  MathSciNet  Google Scholar 

  24. Vardy, A.: Algorithmic complexity in coding theory and the minimum distance problem (invited session). In: 29th ACM STOC, pp. 92–109. ACM Press, May 1997

    Google Scholar 

  25. Wang, Y., Aono, Y., Takagi, T.: An experimental study of kannan’s embedding technique for the search LWE problem. In: Qing, S., Mitchell, C., Chen, L., Liu, D. (eds.) ICICS 2017. LNCS, vol. 10631, pp. 541–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89500-0_47

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by JSPS KAKENHI Grant Number JP17J01987 and by the DFG as part of project P1 within the CRC 1119 CROSSING.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuntao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wunderer, T. (2018). Revisiting the Sparsification Technique in Kannan’s Embedding Attack on LWE. In: Su, C., Kikuchi, H. (eds) Information Security Practice and Experience. ISPEC 2018. Lecture Notes in Computer Science(), vol 11125. Springer, Cham. https://doi.org/10.1007/978-3-319-99807-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99807-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99806-0

  • Online ISBN: 978-3-319-99807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics