Skip to main content

Modeling Spatio-Temporal Dynamics of Metabolic Networks with Cellular Automata and Constraint-Based Methods

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11115))

Included in the following conference series:

Abstract

Increasing experimental evidence suggests that the behaviour of multi-cellular systems, such as tissues and organs, might be largely driven by the complex interplay occurring among metabolic networks. Computational approaches are required to unravel this complexity. However, they currently deal with either the simulation of the spatial dynamics of cell populations or with the simulation of metabolism of individual cells. In order to integrate the modeling of these two key biological processes, we here introduce FBCA (Flux Balance Cellular Automata) a new multi-scale modeling framework that combines a cellular automaton representation of the (higher-level) spatial/morphological dynamics of multi-cellular systems, i.e., the Cellular Potts Model, with a model of the (lower-level) metabolic activity of individual cells, as modeled via Flux Balance Analysis. The representation via cellular automata allows to identify and analyze complex emergent properties and patterns of real-world multi-cellular systems, in a variety of distinct experimental settings. We here present preliminary tests on a simplified model of intestinal crypt, in which cell populations with distinct metabolic properties compete for space and nutrients. The results may allow to cast a new light on the mechanisms linking metabolic properties to clonal dynamics in tissues.

A. Graudenzi, D. Maspero and C. Damiani—Equal contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjerknes, M.: Expansion of mutant stem cell populations in the human colon. J. Theor. Biol. 178(4), 381–385 (1996)

    Article  Google Scholar 

  2. Bruce, M.B., Fields, J.Z., Bonham-Carter, O., Runquist, O.A.: Computer modeling implicates stem cell overproduction in colon cancer initiation. Cancer Res. 61(23), 8408–8411 (2001)

    Google Scholar 

  3. Buske, P., Galle, J., Barker, N., Aust, G., Clevers, H., Loeffler, M.: A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput. Biol. 7(1), e1001045 (2011)

    Article  Google Scholar 

  4. Cazzaniga, P., et al.: Computational strategies for a system-level understanding of metabolism. Metabolites 4(4), 1034–1087 (2014)

    Article  Google Scholar 

  5. Damiani, C., et al.: A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the WarburQ effect. PLOS Comput. Biol. 13(9), e1005758 (2017)

    Article  Google Scholar 

  6. Damiani, C., Di Filippo, M., Pescini, D., Maspero, D., Colombo, R., Mauri, G.: popFBA: tackling intratumour heterogeneity with flux balance analysis. Bioinformatics 33(14), i311–i318 (2017)

    Article  Google Scholar 

  7. Damiani, C., Kauffman, S.A., Serra, R., Villani, M., Colacci, A.: Information transfer among coupled random boolean networks. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 1–11. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15979-4_1

    Chapter  Google Scholar 

  8. Chiara, D., et al.: Integration of single-cell RNA-seq data into metabolic models to characterize tumour cell populations. bioRxiv, 256644 (2018)

    Google Scholar 

  9. De Matteis, G., Graudenzi, A., Antoniotti, M.: A review of spatial computational models for multi-cellular systems, with regard to intestinal crypts and colorectal cancer development. J. Math. Biol. 66(7), 1409–1462 (2013)

    Article  MathSciNet  Google Scholar 

  10. Di Filippo, M., et al.: Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models. Comput. Biol. Chem. 62, 60–69 (2016)

    Article  Google Scholar 

  11. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69(13), 2013 (1992)

    Article  Google Scholar 

  12. Graudenzi, A., Caravagna, G., De Matteis, G., Antoniotti, M.: Investigating the relation between stochastic differentiation, homeostasis and clonal expansion in intestinal crypts via multiscale modeling. PLoS One 9(5), e97272 (2014)

    Article  Google Scholar 

  13. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011)

    Article  Google Scholar 

  14. Khandelwal, R.A., Olivier, B.G., Röling, W.F.M., Teusink, B., Bruggeman, F.J.: Community flux balance analysis for microbial consortia at balanced growth. PloS One 8(5), e64567 (2013)

    Article  Google Scholar 

  15. Murray, P.J., Walter, A., Fletcher, A.G., Edwards, C.M., Tindall, M.J., Maini, P.K.: Comparing a discrete and continuum model of the intestinal crypt. Phys. Biol. 8(2), 026011 (2011)

    Article  Google Scholar 

  16. Noble, D.: Modeling the heart-from genes to cells to the whole organ. Science 295(5560), 1678–1682 (2002)

    Article  Google Scholar 

  17. Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotech. 28(3), 245 (2010)

    Article  Google Scholar 

  18. Pitt-Francis, J., et al.: Chaste: a test-driven approach to software development for biological modelling. Comput. Phys. Commun. 180(12), 2452–2471 (2009)

    Article  MathSciNet  Google Scholar 

  19. Serra, R., Villani, M., Damiani, C., Graudenzi, A., Colacci, A.: The diffusion of perturbations in a model of coupled random boolean networks. In: Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.) ACRI 2008. LNCS, vol. 5191, pp. 315–322. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79992-4_40

    Chapter  Google Scholar 

  20. Rubinacci, S., et al.: CoGNaC: a chaste plugin for the multiscale simulation of gene regulatory networks driving the spatial dynamics of tissues and cancer. Cancer Inform. 14, 53–65 (2015). CIN–S19965

    Google Scholar 

  21. Schellenberger, J., et al.: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat. Protoc. 6(9), 1290–1307 (2011)

    Article  Google Scholar 

  22. Scianna, M., Preziosi, L.: Cellular Potts Models: Multiscale Extensions and Biological Applications. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  23. Shirinifard, A., Gens, J.S., Zaitlen, B.L., Popławski, N.J., Swat, M., Glazier, J.A.: 3D multi-cell simulation of tumor growth and angiogenesis. PloS One 4(10), e7190 (2009)

    Article  Google Scholar 

  24. Steinberg, M.S.: On the mechanism of tissue reconstruction by dissociated cells. I. population kinetics, differential adhesiveness, and the absence of directed migration. Proc. Natl. Acad. Sci. 48(9), 1577–1582 (1962)

    Article  Google Scholar 

  25. Van Hoek, M.J.A., Merks, R.M.H.: Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst. Biol. 11(1), 56 (2017)

    Article  Google Scholar 

  26. Van Leeuwen, I.M.M., Byrne, H.M., Jensen, O.E., King, J.R.: Crypt dynamics and colorectal cancer: advances in mathematical modelling. Cell Prolif. 39(3), 157–181 (2006)

    Article  Google Scholar 

  27. Walpole, J., Papin, J.A., Peirce, S.M.: Multiscale computational models of complex biological systems. Annu. Rev. Biomed. Eng. 15, 137–154 (2013)

    Article  Google Scholar 

  28. Wong, S.Y., Chiam, K.-H., Lim, C.T., Matsudaira, P.: Computational model of cell positioning: directed and collective migration in the intestinal crypt epithelium. J. Roy. Soc. Interface 7(Suppl. 3), S351–S363 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The institutional financial support to SYSBIO - within the Italian Roadmap for ESFRI Research Infrastructures - is gratefully acknowledged. CD received funding from FLAG-ERA grant ITFoC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Damiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graudenzi, A., Maspero, D., Damiani, C. (2018). Modeling Spatio-Temporal Dynamics of Metabolic Networks with Cellular Automata and Constraint-Based Methods. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds) Cellular Automata. ACRI 2018. Lecture Notes in Computer Science(), vol 11115. Springer, Cham. https://doi.org/10.1007/978-3-319-99813-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99813-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99812-1

  • Online ISBN: 978-3-319-99813-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics