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Abstract. Terminating functional programs should be deterministic, i.e., should
evaluate to a unique result, regardless of the evaluation order. For equational func-
tional programs such determinism is exactly captured by the ground confluence
property. For terminating equations this is equivalent to ground local confluence,
which follows from local confluence. Checking local confluence by computing
critical pairs is the standard way to check ground confluence. The problem is
that some perfectly reasonable equational programs are not locally confluent and
it can be very hard or even impossible to make them so by adding more equa-
tions. We propose a three-step strategy to prove that an equational program as is
is ground confluent: First: apply the strategy proposed in [8] to use non-joinable
critical pairs as completion hints to either achieve local confluence or reduce the
number of critical pairs. Second: use the inductive inference system proposed in
this paper to prove the remaining critical pairs ground joinable. Third: to show
ground confluence of the original specification, prove also ground joinable the
equations added. These methods apply to order-sorted and possibly conditional
equational programs modulo axioms such as, e.g., Maude functional modules.

1 Introduction

Functional programs should be deterministic; that is, if they terminate for a given input,
they should return a unique value, regardless of the evaluation order. Ground confluence
is the precise characterization of such determinism for functional equational programs
associated to equational theories of the form & = (2, E @ B), were B are structural

. . o . . -
axioms and E are, possibly conditional, equations that are executed as rewrite rules E
modulo B. Therefore, for execution purposes, all the relevant information is contained

-
in the rewrite theory Rg = (X2, B, E). Since ground confluence is essential both for
correct execution and for almost any form of formal verification about properties of &
and Rg, methods to prove ground confluence are very important.

The standard method to do so for a terminating equational program Rg = (X, B,TE))
is to: (i) prove that it is indeed operationally terminating (and if 2 is order-sorted, also
sort decreasing); and then (ii) since operational termination plus local confluence imply
confluence, prove the stronger property that Rg is locally confluent (modulo B). This
tends to work well in many cases, but not always. The thorny issue addressed in this
paper is what to do when this standard method does not work.
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In [8]], the wild goose chase for a convergent specification by attempting a Knuth-
Bendix completion of & was explicitly discouraged, since it can often lead to an infinite
loop and, even if it were to succeed, can result in a highly bloated and hard to understand
specification. Instead, the following incremental strategy in the spirit of Knuth-Bendix
was suggested: since failure of a proof of local confluence will generate a set of unjoin-
able critical pairs characterizing the most general cases in which rules cannot be shown
confluent, such critical pairs can be used as very useful hints for a user to try to either:
(i) orient a critical pair as a rule and add it to the specification; or (ii) if the critical pair
has the form C[u] = C[v] with C a common context, orient instead u = v and add it to
the specification; or (iii) generalize u = v in cases (i) and (ii) into a more general u’ =V’
that has u = v as a substitution instance and add an oriented version _c))f Li} =V to tlE:}
specification. In this way, we obtain a new specification Rg = (X, B, E W G), where G
are the new oriented equations added by methods (i)—(iii). If Rg is locally confluent,
operationally terminating, and sort-decreasing, we are done; otherwise, we can iferate
the process with the critical pairs obtained for Rg .

In practice, this incremental strategy works reasonably well, but not always. Fur-
thermore, it raises the following unsolved questions:

1. Have we changed the initial algebra semantics? That is, do the original Rg and its
extension Rg have the same initial algebra when viewed as equational theories? If
only additions of type (i) are made, this is always true; but additions of type (ii)—(iii)
are often needed in practice.

2. Was the original specification Rg already ground confluent? That is, can we use
Rg as the proverbial “Wittgenstein ladder” that we can kick away after we have
proved its local confluence?

3. What do we do when we run into a wall? Specifically, the “wall” of having an
equation u = v obtained by methods (i)—(iii) above that cannot be oriented because
it would lead to non-termination.

Our Contributions. This paper provides new methods that answer these three questions
and can greatly help in proving an original specification ground confluent. In a nut-
shell, a more general and powerful strategy is proposed with three steps: First: use the
above-described strategy from [_8] as far as it can go. Second: if you hit the wall of
non-orientability for some critical pairs (Question 3), prove the ground joinability of
such remaining pairs by the inductive methods presented in this work. Third: to ensure
preservation of the initial algebra semantics (Question 1) and the ground confluence of
the original specification (Question 2), use the same inductive methods to prove ground
joinability of all the equations added along the first step. Of course, one could skip the
first step altogether and merge the second and third steps into one; but this may require
a considerably bigger effort, since the whole point of taking the first step is to greatly
reduce the number of pairs to be proved ground joinable. Furthermore, the user may
have made an actual mistake in the original specification Rg, so that the second and
third steps become meaningless. In such a case, the first step can be quite helpful in
identifying such mistakes and help the user restart the process with a new specification.

Paper organization. Preliminaries are gathered in Section [2] The strategy’s First Step
is illustrated in Section [3|by a hereditarily finite sets specification that does indeed run
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into a non-orientability wall. The inductive inference system for ground confluence is
presented and proved sound in Section [} and is illustrated by proving the inductive
joinability of the non-orientable critical pair from Section [3] thus illustrating the Sec-
ond Step. The Third Step is then illustrated in detail for the running example in Section
Some related work and conclusions are discussed in Section[6l Results for the mech-
anized proofs and proofs for auxiliary results can be found in the Appendices

2 Preliminaries

Notation on terms, term algebras, and equational theories is used as, e.g., in [[10]. An
order-sorted signature X' is a tuple 2 = (S, <, F) with a finite poset of sorts (S, <) and
set of function symbols F typed with sorts in §. The binary relation = denotes the
equivalence relation (< U >)* generated by < on S and its point-wise extension to
strings in S *. The function symbols in F can be subsort-overloaded. For any sort s € S,
the expression [s] denotes the connected component of s, that is, [s] = [s]-_. A top sort
in X' is a sort s € S such that for all 5" € [s], 5" < 5. Let X = {X,},es be an S -indexed
family of disjoint variable sets with each X countably infinite. For any s € S, let
X<y = Uyes ns<s Xs- The set of terms of sort s and the set of ground terms of sort s are
denoted, respectively, by T=(X), and T ; similarly, T=(X) and T’s denote, respectively,
the set of terms and the set of ground terms. 7x(X) and 75 denote the corresponding
order-sorted 2-term algebras. All order-sorted signatures are assumed preregular [[10],
i.e., each X-term ¢ has a unique least sort Is(t) € S s.t. t € Tx(X)5p- It is also assumed
that 2 has nonempty sorts, i.e., Ts; # 0 for each s € S. The set of variables of t is
written vars(t) and for a list of terms #q, ..., t,, vars(ty, ..., t,) = vars(t;)U- - -Uvars(t,).

A substitution is an S-indexed mapping 6 € [X — Tx(X)] that is different from
the identity only for a finite subset of X and such that 6(x) € Tx(X), if x € Xj, for
any x € X and s € S. The expression 6|y denotes the restriction of 6 to a family of
variables Y C X. The domain of 6, denoted dom(0), is the subfamily of X such that
x € dom(0) iff 0(x) # x, for each x € X. If dom(0) = {xy,...,x,} we write § = {x; —
0(x1),...,x, — 0(x,)}. The range of 0 is the set ran(8) = J{vars(6(x)) | x € dom(6)}.
Substitutions extend homomorphically to terms in the natural way. A substitution 6 is
called ground iff ran(f) = 0. The application of a substitution 6 to a term ¢ is denoted
by 0 and the composition (in diagrammatic order) of two substitutions 6; and 6, is
denoted by 6,6,, so that 8,6, denotes (t8;)8,. A context C is a A-term of the form
C = Axy,...,x,.c with ¢ € Tx(X) and {x1,...,x,} C vars(c); it can be viewed as an
n-ary function (t1,...,t,) — C(t1,...,t,) = cf, where 6(x;) = t; for 1 < i < n and
O(x) = xfor x ¢ {x1,...,x,}.

An equational theory is a tuple (2, E), with 2" an order-sorted signature and E a
finite collection of (possibly conditional) X-equations. An equational theory & = (2, E)
induces the congruence relation =g on Tx(X) defined for t,u € Ts(X) by t =g u iff
E F t = u, where & + t = u denotes &-provability by the deduction rules for order-
sorted equational logic in [[12]. For the purpose of this paper, such inference rules,
which are analogous to those of many-sorted equational logic, are even simpler thanks
to the assumption that 2" has nonempty sorts, which makes unnecessary the explicit
treatment of universal quantifiers. The expressions 7g(X) and 7 (also written 7 5/(X)



4 Francisco Durdn, José Meseguer, and Camilo Rocha

and 7 x/g) denote the quotient algebras induced by =g on the term algebras 7 x(X) and
T 5, respectively. 75/ is called the initial algebra of (X2, E).

We assume acquaintance with the usual notions of position p in a term 7, subterm |,
at position p, and term replacement #[u], at position p (see, e.g., [S]]). A rewrite theory
is a tuple R = (2, E, R) with (X, E) an order-sorted equational theory and R a finite set
of possibly conditional X-rules, with conditions being a conjunction of 2-equalities. A
rewrite theory R induces a rewrite relation —g on 7Tx(X) defined for every #,u € Tx(X)
by t —»g u iff there isarule ! — r if ¢) € R, aterm ¢, a position p in ¢, and a
substitution 6 : X — Tx(X) satisfying t =g ' = ¢'[10],, u =g t'[r0],, and (X, E) + ¢6.
The tuple T = (Tx/E, —y) is called the initial reachability model of R [3ll.

In this paper we will mostly focus on rewrite theories of the form Rg = (2, B,J_E>)
associated to an equational theory & = (2, E W B), were: (i) B are decidable structural
axioms whose equations u = v € B are linear (no repeated variables in either u or v)
and regular (same variables in # and v), for which a matching algorithm exists, and

(i1) the possibly conditional rewrite rules E are strictly B-coherent [13|]. Under such
assumptions, the rewrite relation t —, u holds iff there exists #” such that u’ =p u, and
o2, u’, where, by definition, ¢ —  u' iff there exists arule (I — r if ¢) € 1_E>, a
position p in ¢ and a substitution € such that #|, =g 16, u’ = t[ré],, and Rg + ¢6. We will
assume throughout that the rules E are always strictly B-coherent. We finally assume
that the axioms B are: (i) sort-preserving, i.e., for each (u = v) € B and substitution o
we have Is(uo) = Is(vo); and (ii) term-size preservingﬂ ie., if t =g ¢, then |t| = |V'].
Appropriate requirements are needed to make an equational theory & = (2, E W B)
admissible as an equational program, i.e., for making Rg = (X, B,I_E>) executable in
languages such as Maude [4]. In this paper, besides the above assumptions about B and
_E>, we assume that the rules in E are sort-decreasing, operationally terminating, and
ground confluent modulo B. The rewrite rules E are sort decreasing modulo B iff for
each (t — u if y) € E and substitution 6, Is(t6) > Is(uf) if Re + y6. Re = (=, B, E)
is operationally terminating modulo B [6]] iff there is no infinite well-formed proof tree
in (2, B,Z“)). Call t,¢ € Ts(X) joinable in Rg, denoted t |g, t' iff there exist u, v such
that ¢ —>%B u, t —>%B v,and u =g v. Call Rg = (2, B,E)) confluent (resp., ground
confluent) modulo B iff for all #,1,,1, € Ts(X) (tesp., for all t,1,,1, € Tx), if t -

and ¢ —>iE, 5 t, then t; g, tr. For Rg = (2, B,}_5>) to have good executability properties

as a termfnating equational program, the following requirements are needed : (a) sort
decreasingness, (b) operational termination, and (c) ground confluence. If conditions
(a)—(c) are met, we call Rg ground convergent. Rg is called convergent if it satisfies the
stronger requirements of sort-decreasingness, operational termination, and confluence.

4 For combinations of associativity, commutativity, and identity axioms, this last condition only
rules out identity axioms. However, both for termination and confluence analysis purposes,
identity axioms can always be turned into convergent rewrite rules modulo associativity and/or
commutativity axioms, as explained in [/7].
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3 An Equational Specification for Hereditarily Finite Sets

When checking the confluence of an equational specification, the CRC tool [8}/9]] pro-
vides as result a set of critical pairs that cannot be joined automatically by its built-in
heuristics. They are proof obligations that can either be proved joinable or used as guid-
ance for modifying the input specification. The methodology proposed in [§8] for using
the CRC tool suggests that critical pairs can help in identifying theorems of the origi-
nal specification which, when added to it, may lead to a confluent or ground confluent
specification. However, as the example of HF-SETS presented in this section shows, the
analysis of critical pairs to modify a specification, though a useful first strategy, may be
insufficient to make the specification ground confluent. Other techniques, such as the
ones presented in Section[d] may be needed.

Consider the specification of hereditarily finite sets below, namely, of finite sets
whose elements are all hereditarily finite sets (see, e.g., [11]). The recursive definition
of well-founded hereditary sets has the empty set as the base case and if sy, ..., s; are
hereditarily finite, then so is {s,..., sx}. These sets play a key role in axiomatic set
theory because they are a model of all the axioms of set theory except for the axiom
of infinity. Furthermore, as the methods developed in this work will show, the initial
model of the HF-SETS specification below is a consistent model of set theory without
the axiom of infinity.

fmod HF-SETS is protecting BOOL-OPS .

sorts Magma Set .

subsort Set < Magma .

op _,_ : Magma Magma -> Magma [ctor assoc comm] .

op {_} : Magma -> Set [ctor] .
op {} : -> Set [ctor] .

vars M M’ : Magma . vars S S’ : Set
eq [01]: M, M =M .
op _in_ : Magma Set -> Bool . *** gset membership for several elements

eq [11]: S in {S} = true .

eq [12]: S in {} = false .

eq [13]: {} in {{M}} = false

eq [14]: {M} in {{}} false

eq [15]: {M} in {{M’}} =M in {M'} and M’ in {M} .
eq [16]: S in {S’, M} =S in {S’} or S in {M} .

eq [17]: (S, M) in S = (Sin S’) and (M in S’) .

op _~_ : Set Set -> Bool . %% set equality
eq [21]: S~ S’ = (S<=S’) and (S’ <= 9) .
op _<=_ : Set Set -> Bool . **% set containment

eq [31]: {} <= S = true .
eq [32]: {M} <=S =M in S .
op _U_ : Set Set -> Set [assoc comm] .
eq [41]: SU {} =S .
eq [42]: M} U {M'} ={M, W'} .
eq [43]: SU{MyU{M'}=SU{M M} .
op P : Set -> Set . %% powerset
eq [511: P({D = {{}} .
eq [52]: P({S}) = {{},{S}} .
eq [53]: P({S, M}) = P({M}) U augment(P({M}), S) .
op augment : Set Set -> Set . **% augmentation
eq [61]: augment({}, S) = {} .
eq [62]: augment({S}, S’) = {{S’} U S} .
eq [63]: augment({M, M’}, S) = augment({M}, S) U augment({M’}, S) .
op _&_ : Set Set -> Set . **%* intersection
eq [71]: {} & S ={} .
ceq [72]: {S} & S’ = {S} if S in S’ = true
ceq [73]: {S} & S’ = {} if S in S’ = false
ceq [74]: {S, M} & S” = {S} U ({M} & S’) if S in S’ = true

* union
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ceq [75]: {S, M} & S’ = {M} & S’ if S in S’ = false .
endfm

The Church-Rosser check of the HF-SETS module using the CRC tool says that the
specification is sort-decreasing, but it cannot show that it is locally confluent, returning
eight critical pairs as proof obligations. At this point, there are two alternatives: either
(i) we try to prove the ground joinability of these critical pairs to conclude that the
specification is locally ground confluent, or (ii) we follow the iterative strategy proposed
in [8] to get a locally confluent specification or at least reduce the number of critical
pairs for which a proof of joinability is necessary. In the rest of this section, we explore
the second alternative. The first alternative will be revisited after the second one is
exhausted (both are useful) in Section 5]

The following one is one of the critical pairs returned by the check:

cp HF-SETS1123 for 11 and 15 true = M’:Magma in {M’:Magma} .

It comes from the overlap of equations 11 and 15. Although there are equations for all
possible instances of the term M in {M}, Maude cannot reduce it as magmas. We can
attempt adding equations to reduce it as follows:

fmod HF-SETS-0 is protecting HF-SETS .
vars M M’ : Magma .
eq [18]: M in {M} = true .
eq [19]: M in {M’, M} = true .

endfm

A check of the Church-Rosser property for HF-SETS-0 returns seven critical pairs.
Let us consider one of these critical pairs:

cp HF-SETS-095 for 01 and 63
augment ({M’ :Magma}, S:Set) = augment({M’:Magma}, S:Set) U augment({M’:Magma}, S:Set) .

This critical pair comes from the overlap of equations 01 and 63. Indeed, this critical
pair cannot be further reduced because there is no idempotency equation for the union
operator on sets. We can see the same problem in other four of the critical pairs reported
by the tool. Although S U S = S could be proven in HF-SETS-0, there is the alternative
option of extending the specification with an idempotency equation for set union.

fmod HF-SETS-1 is protecting HF-SETS-0 .
var S : Set .
eq [44]: SUS =S .

endfm

The Church-Rosser checker tool produces the following output for HF-SETS-1:

The following critical pairs must be proved joinable:

cp HF-SETS-118 for 53 and 53
P({#6:Magma}) U augment (P({#6:Magma}), S:Set) U augment(P({#6:Magma}) U
augment (P({#6:Magma}), S:Set), #1:Set)

= P({#6:Magma}) U augment(P({#6:Magma}), #1:Set) U augment(P({#6:Magma}) U
augment (P({#6:Magma}), #1:Set), S:Set).

cp HF-SETS-1355 for 01 and 53
P({#3:Magma}) U augment (P({#3:Magma}), S:Set)

= P({#3:Magma}) U augment(P({#3:Magma}), S:Set) U augment(P({#3:Magma}) U
augment (P({#3:Magma}), S:Set), S:Set).

The module is sort-decreasing.

A careful study of these critical pairs suggests the need for an equation to apply augment
over the union operator.
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fmod HF-SETS-2 is protecting HF-SETS-1 .

vars S S’ T : Set .

eq [64]: augment(S U S’, T) = augment(S, T) U augment(S’, T) .
endfm

The critical pairs get further reduced in HF-SETS-2, but two remain:

The following critical pairs must be proved joinable:

cp HF-SETS-218 for 53 and 53
P({#6:Magma}) U augment (P({#6:Magma}), S:Set) U augment(P({#6:Magma}), #1:Set) U
augment (augment (P({#6:Magma}), S:Set), #1l:Set)

= P({#6:Magma}) U augment (P({#6:Magma}), S:Set) U augment(P({#6:Magma}), #1:Set) U
augment (augment (P({#6:Magma}), #1:Set), S:Set).

cp HF-SETS-2411 for 01 and 53
P({#3:Magma}) U augment (P({#3:Magma}), S:Set)

= P({#3:Magma}) U augment (P({#3:Magma}), S:Set)

U augment (augment (P({#3:Magma}), S:Set), S:Set).
The module is sort-decreasing.

The second critical pair suggests the need for an equation handling the repeated
application of the augment operator.
fmod HF-SETS-3 is protecting HF-SETS-2 .
vars S T : Set .

eq [65]: augment(augment(S, T), T) = augment(S, T) .
endfm

However, one critical pair remains in HF-SETS-3:

Church-Rosser check for HF-SETS-3
The following critical pairs must be proved joinable:
cp HF-SETS-318 for 53 and 53
P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma}),#1:Set)U
augment (augment (P ({#6:Magma}),S:Set),#1:Set)
= P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma}),#1:Set)U
augment (augment (P({#6:Magma}),#1:Set),S:Set).
The module is sort-decreasing.

It is not obvious at all how to eliminate this critical pair, since adding the equation
eq augment (augment(S, S’), T) = augment(augment(S, T), S’) .

would make the specification non-terminating. This suggests that the second approach,
i.e., the strategy of trying to complete the specification by analyzing the unjoinable
critical pairs has now been exhausted. However, the original problem has now been
reduced to a single critical pair. At this point, the best approach is to prove the induc-
tive joinability of the critical pair HF-SETS-318 obtained in the check of HF-SETS-3,
and thus conclude that the specification is ground locally confluent. Section [ presents
techniques for carrying out such inductive proofs. Indeed, it will also present results
showing that the original specification was already ground confluent!, without the need
for the extra equations added in the process. The specification is terminating. Indeed,
the MTT tool is able to find termination proofs for all the versions of the HF-SETS
module, and specifically for HF-SETS-3 (see Appendix [B). A proof of the sufficient
completeness of the specification can be found in Appendix [C]

Finally, note that if an added equation comes from orienting a critical pair, it is
a logical consequence of the specification and therefore the new specification has the
same initial model of the old one. Although the additional equations added during the
process may not be those obtained from critical pairs as such, proving that they are
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ground joinable is enough to show that they are actually inductive lemmas, and therefore
—as explained in more detail in Theorem [6] in Section [d}- that they both preserve the
initial algebra semantics and can be removed from the original specification.

4 Proving Ground Joinability

This section presents inductive techniques for proving ground joinability for rewrite
theories associated to equational specifications. These techniques are presented as meta-
theorems about the ground reachability relation induced by a rewrite theory and are used
to justify the inference system also presented in this section.

Definition 1. Let R be a rewrite theory with signature 2 = (S,<,F) and t,u € Tx(X);
for some s € S. The terms t and u are called:

1. R-joinable, written R+ (VX)t | u, iff there isv € Ts(X), such that R+ (¥VX)t =% v
and R+ (VX)u —* v.

2. ground R-joinable, written R v (VX)t | u, iff R + 10 | ub for all ground substitu-
tions 0 € [X — Tx].

The authors of [[16] investigate constructor-based inductive techniques for proving
ground joinability. They distinguish two notions of constructors for a rewrite theory R,
namely, one for the equations and another one for the rules in R.

Definition 2 (Defs. 5 and 6 [16]). Let R = (X, E, R) be a rewrite theory with underlying
equational theory & = (X, E). A constructor signature pair for R is a pair (1, Q) of order-
sorted subsignatures 1 = (S,<, Fy) C Q = (S, <, Fo). The sets of terms Ty = {Tys}ses
and Tgo = {Tqs)ses are called, respectively, E-constructor terms and R-constructor
terms. The rewrite theory R is called:

1. E-sufficiently complete relative to Q iff (Vs € S)(Vt € Tx )(Au e To,) E+t = u
2. R-sufficiently complete relative to 1" iff (Vs € S)(Vt € Tz )(Av e Tys) Rt —* .
3. sufficiently complete relative to (1, Q) iff (1) and (2) hold.

The notion of sufficient completeness for a rewrite theory R relative to a constructor
signature pair (7, Q) is that Q C X' are the constructors for the equations and 1" C @
the constructors for the rules, thus including the standard concept of constructor for
equational specifications as a special case. The intuition behind equational constructor
terms is that any ground 2-term should be provably equal to a term in T and for rewrite
constructors that any 2-term should be rewritable to a term in Ty.

It is sufficient to consider all R-constructor terms in 7y when inducting on a vari-
able x of sort s, for a proof on inductive joinability in R to be sound.

Theorem 1 (Thm. 6 [16])). Let R be a rewrite theory with signature X = (S, <, F) and
t,u € Ts(X), for some s € S. If R is sufficiently complete relative to the constructor
signature pair (1, Q), then R+ ¥X)t L uiff ¥n e [X — Ty]) R+t | un.
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ReNX)t L u RiENMX)tlu RMX)tlu
——  JoN Ctx ——F  GrAL
RI-VX)tlu R (VX)C[t] | Clu] RI-(VX)16 | ub

Fig. 1: Inference rules for proving joinability for a rewrite theory R by rewrite-based
reasoning, and inductive reasoning for contexts and substitution instances.

Figure [1| presents the Jomv, Ctx and GraL inference rules for proving joinability for
a rewrite theory R, respectively, by rewrite-based reasoning, inductive reasoning under
contexts, and generalization. The soundness of the Join rule is straightforward to obtain,
while Theorem [2]justifies the soundness of the Ctx and GrAL rules. This result can be
used to simplify the complexity of terms to be joinable if they share a common context.

Theorem 2. Let R be a rewrite theory with signature 2 = (S, <, F) and C[t],Clu] €
Ts(X)s for some s € S. If R+ ¥VX)t | u, then:

1. R-(¥VX)Clt] | Clul;
2. R+ (¥X) 10 | ub, for any substitution 6 € [X — Tx(X)].

Proof. The two properties follow from the fact that the rewrite relation —¢ is closed
under contexts and substitutions. O

Since the goal is to prove ground joinability of a rewrite theory of the form Rg =

<, B,f) associated to an equational theory & = (X, E W B), such as that for hereditarily
finite sets presented in Section [3] the most appropriate notion of constructor is that
of Rg-constructors. More precisely, a constructor signature pair for Rg has always the
form (7,2) because the only equations in Rg are the axioms B not associated to any
rewriting. Hence, Rg sufficient completeness is always relative only to T".

Reasoning about ground joinability requires inductive inference support, e.g., in the
form of a constructor-based scheme using finite generating sets.

Definition 3. Ler & = (2, E W B) be an equational theory, with X = (S, <, F), such that
the rewrite theory Rg is weakly terminating, ground sort-decreasing, and has subsigna-
ture T of Rg-constructors. Further, let s € S. A set G; C Ty 4(X) is a (finite) generating
set for s modulo B iff G is finite, Gy N X = 0, and

Tryps = | ) (wols | o € vars(w) — Ty}

weG,
The following induction scheme is sound for inferring ground joinability in Rg.

Theorem 3. Let Rg be a weakly terminating and ground sort-decreasing rewrite the-
ory, with signature X' = (S, <, F) and subsignature T of Rg-constructors. Moreover, let
t,u € Ts(X), x € vars(t,u) N X, for some s € S, and G, a generating set for s modulo
B, such that (without loss of generality) vars(G;) N vars(t,u) = 0. Then:

FRevX) N\ |\ lwlxm =0 Lulxmw,

weGy Lyevars(w)NX<s

then Rg +w VX) 1 | u.
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Proof. By contradiction. Suppose the antecedent holds, but there is a ground substitu-
tion o € [vars(t,u) — Tx] such that Rg ¥ (¢ | u)o. Note, however, that by f being
strict B-coherent and G, being a generating set for s modulo B, o is always of the form
o =p {x > w}r, for some w € G, and substitution 7, and then we have

Re¥ (tluwo iff Rg¥ (@l uwix— wir
Consider now the non-empty set of ground terms
fwr|weG; A TtelY, —Ts] A Rg¥ (t] uxm— wit}

where Y,, = (vars(t,u) \ {x}) U vars(w). Pick wt( of smallest term size possible in the

above set. By the strict B-coherence of E and the assumption that the axioms B are
size-preserving, this means that for any ground substitution o € [vars(t,u) — Tx],
such that Rg ¥ (¢ | u)o, we must have |o(x)| > [wtg|. In particular, since w N X = 0,
this means that for each y € vars(w) N X<, we must have |1o(y)| < [wtg| and therefore
Re + (t | u){x — y}ry. But, by hypothesis this implies Rg + (t | w){x — w}rg, a
contradiction. |

It is also sound to reason about ground joinability in Rg using case analysis based
on the Rg-constructor signature 7.

Theorem 4. Let Rg be a weakly terminating and ground sort-decreasing rewrite the-
ory, with signature X = (S, <, F) and subsignature 1 of Rg-constructors. Moreover, let
t,u € Ty(X), x € vars(t,u) N X, for some s € S, and G a generating set for s modulo
B, such that (without loss of generality) vars(Gy) N vars(t,u) = 0. Then:

Re - (VX)t Lu iff Re i (VX) /\(tlu){xl—)w}.

weG,

Proof. If Re = (VX)t | u, then clearly Rg I+ (VX) Ayec,(t | w){x — w}. For the
proof in the opposite direction, let o € [X — Tx] be such that Rg ¥ (¢ | u)o: the
goal is to show that Rg ¥ (YX) A,ec,(f | w){x — w}, for some w € G. Since G, is a
generating set for the sort s and x € X, then there is w € G5 and p € [X — T] such
that o(x) = wp. Let 0" = O jarsruy\(x} @ p and observe that o is well-defined because
of the assumption vars(Gy) N vars(t, u) = 0. Furthermore, observe:

(t L wo =@ | wi{x = c(OITparsuwn\ix)
=p (t | W{x = wWoloharsu\ix)
= (¢ | wix = WO parsanix ¥ P)
=] wxe- wlo'.

Hence, by the strict B-coherence of f, we must have Rg ¥ (VX) A,eq,(t L w){x — wi.
O

This concludes the inference system for proving ground joinability. However, an
important practical issue remains: how should the checking of R + (VX)¢ | u used
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Rer (V) N\ | N\ Clwixoy=0luwxew

weGy Lyevars(w)NX<

Rew (VX)t | u

GSInp

Re I (VX) /\ (t L w)ix — w)

weG,

Rew (VX)t | u

CTorCASES

Fig. 2: Inference rules for proving ground joinability for a rewrite theory Rg with Rg-
constructors 1" by induction relative to the generating set G, and by constructor-based
case analysis on a variable x € vars(t,u) N X;.

in inference rule JoiN be best mechanized? After all, t | u is a somewhat complex
relation, involving existential quantification. This issue can be satisfactorily addressed
by means of a program transformation Rg — RZ that extends the possibly conditional
and operationally terminating rewrite theory Rg, associated to an equational theory & =
(2,E W B), to a theory Rg with: (i) a new sort Prop with constant tt and (ii) a new
operator _ ~ _ with the rule x = x — ##, such that

Rer (VX)tlu iff REF(VX)tm~u-—>"1.

Since the right side of the equivalence is a reachability property and the transformation
Rs +— R preserves operational termination, the theory R and Maude’s search com-
mand can be used to check that R + (¥X)¢ | u. This is used in the Example [I| below,
where the binary function symbol join implements the operator _ ~ _. The precise
description of the Rg +— RZ transformation is given in Appendix@

Example 1. Recall from Section [3|the only critical pair output by the CRC tool for the
HF-SETS-3 specification; the goal is to prove:

HF-SETS-3 + (YM :Magma; S, T :Set) t(M, S, T) | u(M,S,T)
where
t(M,S,T) = P{M}) U augment(P{M}),S) U augment(P({M}), T)
U augment(augment(P({M}), S), T)
u(M,S,T) = P({M}) U augment(P{M}),S) U augment(P{M}), T)
U augment(augment(P({M}), T),S)

By the Crx rule it suffices to prove:

HF-SETS-3 I+ (YM:Magma; S, T : Set)
augment(augment(P({M}),S),T) | augment(augment(P({M}),T),S)

Moreover, since P({M}) has sort Set, this statement can be proved by considering a
stronger property, namely, by using the GrAL rule and proving:

HF-SETS-3 I+ (¥S,S’, T : Set) augment(augment(S’, S), T) | augment(augment(S’,T),S)
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This proof obligation can be dealt with by using the CTorCASEs rule on S’ € Xge with
generating set Gset = {{}, {M}} and M € Xmagma. This rule application results in the
following two proof obligations:
HF-SETS-3 I+ (VS, T: Set) augment(augment({}, S ), T) | augment(augment({},T), S)
HF-SETS-3 I+ (VS, T:Set; M : Magma)
augment(augment({M},S),T) | augment(augment({M},T), S)

The first proof obligation can be discharged by a search command in Rjj¢ ge1s.5:

search in HF-SETS-3-REACH :
join(augment (augment({{}}, S), T), augment(augment({{}}, T), S)) =>! tt .
Solution 1 (state 1)
The second proof obligation can be handled using the GSIND rule on M € Xpagma With
generating set Gpagma = {5/, (8", M")}, S € Xset, and M’ € Xmagma:

HF-SETS-3 + (VS,S’, T : Set)
augment(augment({S'},S), T) | augment(augment({S’'},T),S)
HF-SETS-3 + (¥S,S’,T:Set; M' : Magma)
v = augment(augment({S’,M'},S),T) | augment(augment({S’, M'},T),S)

where i is the formula:

augment(augment({S'},S), T) | augment(augment({S’},T),S) A
augment(augment({M’},S), T) | augment(augment({M'},T), S).

For the first one of these two proof obligations, a proof can be found as follows:

search in HF-SETS-3-REACH :

join(augment (augment({S’}, S), T), augment(augment({S’}, T), S)) =>! tt .
Solution 1 (state 14)
For the second proof obligation, it suffices to rewrite both terms in the consequent of
the implication and use the second conjunct in , together with the Joix and Ctx, to join
the resulting terms:
search in HF-SETS-3-REACH : augment(augment({M’,S’}, S), T) =>! X:Set .

Solution 1 (state 6)
X:Set --> {S’ U {S,T}} U augment(augment({M’}, S), T)

search in HF-SETS-3-REACH : augment(augment({M’,S’}, T), S) =>! X:Set .

Solution 1 (state 6)

X:Set --> {S’ U {S,T}} U augment(augment({M’}, T), S)

Therefore, all critical pairs of HF-SETS-3 are ground joinable; hence, HF-SETS-3 is
ground convergent, as desired.

But is the original specification HF-SETS itself ground convergent? That is, can the
extra equations in HF-SETS-3 just be used as scaffolding and then be removed as unnec-
essary? The following result shows that, if the successive addition of oriented equalities
leads us to a ground convergent theory and such equalities are ground joinable, then the
added equations are indeed unnecessary. The main idea is that, starting from an equa-
tional specification &, if a sequence of equational theories &) € &, C --- € &, can be
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built by incrementally adding new equations (e.g., resulting from critical pairs between
the equations), and if the new equations added at each step can be shown ground join-
able, then the ground confluence of &, implies the ground confluence of each &;, and in
particular of &g.

Theorem 5. Let (X, Egw B) C (2,E; W B) where E)O,B is sufficiently complete with
respect to a subsignature Q, (X, E1 ¥ B) is ground convergent, -, |Q =-p |Q, and
all equations in E\ — Ey are ground E, B-joinable. Then,

! 1
—_ = = |- = .
( 75 B)lT,Y ( 75 B)|T,r

That is, the normal forms of the rewriting relation modulo B restricted to the initial
term algebra Ty coincide.

. . _) _) H . . . .
Proof. First of all note that, since Ey C E|, (X, B, Ey) is operationally terminating.

. . T .
Consider some ¢ € T and rewrite t —', u. Since Ey, B is sufficiently complete and
ELB

—55 lo = —g IQ, u € To. If all rules applied in the chain are in EO, then the chains

obviously commde. Otherwise, let us consider the first rewrite step using a rule in E 1=
—
E()I

* !

— - —

Ey.B E\-Ey.B
! !

— —

Ey.B V=W Ey.B
B

1)
&

First, we have v =p w by ground joinability of equations in E; — Ey. Then, by the
assumption that %5 lo =>p |0, u and w are in E, B-canonical form, and by the

ground confluence of E 1, B we must have u =g w. Therefore, we can conclude that

! | .
-, i=plr, =>_, ;=g Ir,, as desired. o
Ey.B E|.B

Theorem 6. Suppose (X, EgW B) C ... C (X2,E, W B), withn > 0, such that E)o W B
—

is sufficiently complete with respect to a subsignature Q, E,, W B is ground convergent,

(—>E> B)|_Q (—>E> B)|_Q, and all E;y — E; are ground E;-joinable modulo B. Then, each

<, E W B) is ground convergent, for 0 < i < n. Furthermore, all theories in the chain
have the same initial algebra.

Proof. By induction on n. It is trivial for n = 0. Suppose it true for n, and let us prove
it true for n + 1. Given a chain (X, E0wW B) € 2,EywB) C ... € (2,E, W B), by
the induction hypothesis —plus the fact that (X, Ey & B) sufficiently complete makes
(2, E, W B) so as well— we get that (2, E; W B) is ground convergent. The proof that
(2, Eg W B) is ground convergent is as follows. Since (2, E; W B) is ground convergent,
(2, Eg W B) is a fortiori sort-decreasing and operationally terminating, so all we need to
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prove is its ground confluence. But since, by Theorem |5} —%} B; =B Irs =—>? B; =g Iy,
0 1s

the following diagram proves ground confluence of —55

Ey.B’

u = = 1%
—
E
\!! — 'g/
0 D Eo.B
u, Loiniiniiiiniioin v, 0
B

Note that u” =g V" by ground confluence of - ..
1>

Finally, we already know by the Induction Hypothesis that all the theories
Q,EfwB)C---C(2,E,YB)
have the same initial algebra, and, by ground-joinability of E; — Ey, that

Tx/Ew E E1 — E.
Therefore, we also get 7x/g,wp = 7x/E,vB, as desired. a

Theorem [f] justifies the view of the new equations suggested by critical pairs ob-
tained, say, from the CRC tool, as hints for extending our original specification as “scaf-
folding” that can be abandoned affer we have reached a ground convergent extension
(2, E, W B). Going back to the example in Section 3] once the HF-SETS-3 module has
been proven ground convergent, we can conclude that the original HF-SETS specifica-
tion is also ground convergent, provided we can show that the equations added at stage
i + 1 were ground joinable relative to stage i. This is shown to be the case in Section [3]
by providing proofs of ground joinability for the five equations added in HF-SETS-0,
HF-SETS-1, HF-SETS-2, and HF-SETS-3 in Section[3]

S Ground Convergence of HF-SETS

The goal of this section is to conclude that the equational specification HF-SETS pre-
sented in Section [3]is ground convergent, and therefore that its initial model is a model
of set theory without the axiom of infinity. The key tools for achieving this goal are the
inference system for inductive joinability and Theorem [f] both presented in Section [4]
By knowing that Ryr.seTs-s is terminating (Appendix [B), sort decreasing (Section [3)),
and that HF-SETS is sufficiently complete (Appendix [C), the conditions in Theorem [6]
apply and we just need to show the ground joinability of the added equations.
That is, since HF-SETS-3 is ground convergent and the theory inclusions

HF-SETS € HF-SETS-0 € HF-SETS-1 € HF-SETS-2 C HF-SETS-3
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satisfy the requirements of Theorem[6] it suffices to prove

HF-SETS I+ (YM :Magma) M € {M} | true

HF-SETS I+ (YM, M’ :Magma) M € {M, M’} | true
HF-SETS-0 I (VS :Set)S US | S
HF-SETS-1 I+ (V¥S,S’, T : Set) augment(S US',T) | augment(S,T) U augment(S’,T)
HF-SETS-2 + (VS, T : Set) augment(augment(S,T),T) | augment(S,T)

in order to conclude that HF-SETS is ground convergent. In what follows, detailed
proofs are provided for the last three proof obligations. The first two properties can
be proved by following a similar approach.

The third proof obligation is dealt with by using the CTorCASEs rule on S € Xget
with generating set Gser = {{}, {M}} and M € Xyagma:

HF-SETS-0 - {} U {} | {}
HF-SETS-0 + (VM :Magma) {M} U {M} | {M}

These two proof obligations can be automatically discharged by Maude in R ge1s.0:

search in HF-SETS-0-REACH : join({} U {}, {}) =! tt .

Solution 1 (state 2)

search in HF-SETS-0-REACH : join({M} U {M}, {M}) =>! tt .
Solution 1 (state 3)

Next, for the fourth proof obligation, a sequence of inference steps are needed. First,
the CTorCasEs rule is used on S set With generating set Gset = {{}, {M}} and M € Xmagmas,
resulting in the following proof obligations:

HF-SETS-1 I+ (¥S’, T : Set) augment({} U S’, T) | augment({}, T) U augment(S’,T)
HF-SETS-1 I+ (YS', T : Set; M : Magma)
augment({M}yU S, T) | augment({M}, T) U augment(S’,T)
For the second one of these two proof obligations, the CTORCAsEs rule on S’ € Xge with

generating set Hg, = {{},{M’}} and M" € Xyagma is used; this transforms the second
proof obligation in the following two proof obligations:

HF-SETS-1 (VT : Set; M : Magma)

augment({M} U {},T) | augment({M},T) U augment({}, T)
HF-SETS-1 I+ (YT : Set; M, M’ : Magma)

augment({M} U {M’},T) | augment({M},T) U augment({M’'}, T)

The remaining three proof obligations can be automatically discharged by Maude in

Rir-seTs.q as follows:

search in HF-SETS-1-REACH : join(augment({} U S’, T), augment({}, T) U augment(S’, T)) =>! tt .
Solution 1 (state 6)
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search in HF-SETS-1-REACH :
join(augment({} U {M}, T), augment({}, T) U augment({M}, T)) =>! tt .
Solution 1 (state 6)

search in HF-SETS-1-REACH :
join(augment({M} U {M’}, T), augment({M}, T) U augment({M’}, T)) =>! tt .
Solution 1 (state 3)

The fifth, and last proof obligation, is dealt with by using the CTorRCASEs rule on
S € Xget With generating set Gset = {{}, {M}} and M € Xpagma. This rule application
results in the following two proof obligations:

HF-SETS-2 I+ (VT : Set) augment(augment({}, T),T) | augment({}, T)
HF-SETS-2 I+ (VT : Set; M : Magma)
augment(augment({M},T),T) | augment({M},T)

The first proof obligation can be discharged automatically:

search in HF-SETS-2-REACH : join(augment(augment({}, T), T), augment({}, T)) =>! tt .
Solution 1 (state 4)

The remaining proof obligation can be handled with the help of the GSInD rule with
generating set Gpagma = {S/, (8", M")}, S € Xset and M’ € Xyagma:
HF-SETS-2  (YS’, T : Set) augment(augment({S’}, T), T) | augment({S'},T)
HF-SETS-2 + (¥ S’, T :Set; M’ : Magma)
Y = augment(augment({S’,M'},T),T) | augment({S’,M'},T)

where ¢ is the formula:

augment(augment({S’}, T), T) | augment({S'}, T)
A augment(augment({M'},T), T) | augment({M’'},T).

These two proof obligations can be solved with the help of Maude:

search in HF-SETS-2-REACH : join(augment(augment({S’}, T), T), augment({S’}, T)) =>! tt .
Solution 1 (state 10)

search in HF-SETS-2-REACH : augment(augment({M’,S’}, T), T) =>! X:Set .
Solution 1 (state 7)
X:Set --> {S’ U {T}} U augment(augment({M’}, T), T)

search in HF-SETS-2-REACH : augment({M’,S’}, T) =>! X:Set .
Solution 1 (state 2)
X:Set --> {S’ U {T}} U augment({M’}, T)

Note that the terms obtained by the last two search commands can be joined by assum-
ing .

The initial goal has now been reached. Namely, since all the equations added in the
process of building the tower of theory inclusions

HF-SETS € HF-SETS-0 € HF-SETS-1 € HF-SETS-2 C HF-SETS-3

have been shown ground joinable, Theorem [6] guarantees that the equational specifica-
tion HF-SETS for hereditarily finite sets is ground convergent.
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6 Related Work and Conclusion

In [2], A. Bouhoula proposes an inference system for simultaneously checking the suf-
ficient completeness and ground confluence of constructor-based equational specifica-
tions. His approach computes a pattern tree for every defined symbol and identifies
a set of proof obligations whose inductive validity has to be checked: it they all are
inductive theorems, then the specification is both sufficiently complete and ground con-
fluent; otherwise, it outputs a counterexample. The main difference between the two
approaches is that the one presented in this paper can handle both conditional speci-
fications and reasoning modulo axioms, while [2]] does not support reasoning modulo
axioms. More recently, Nakamura et al. [15]] propose incremental techniques for prov-
ing termination, confluence, and sufficient completeness of OBJ specifications. Their
inference system is also based on the notion of constructor subsignatures, handles con-
ditional equations, and provides sufficient conditions for ensuring such an incremental
extension in a modular way. However, for ground confluence, their method has been
developed for extensions that preserve the set of critical pairs relative to the extended
specification.

Different tools and techniques have been proposed for proving and disproving con-
fluence. Tools such as CSI [14] or ACP [1] are automatic confluence provers for first-
order rewrite systems. These tools implement different criteria for proving both conflu-
ence and non-confluence.

This work has addressed a thorny and important problem in reasoning about equa-
tional programs and algebraic specifications with an initial algebra semantics: the fact
that in practice a substantial number of such programs and specifications are perfectly
reasonable and there is nothing wrong with them, yet they are not locally confluent
and therefore fall outside the scope of the standard methods to prove them ground
convergent. As the HF-SETS example has shown, it is quite mistaken to assume that,
since our program is perfectly reasonable, we should be able to complete it in some
Knuth-Bendix-like fashion, because we can easily hit a non-orientability “wall.” We
have proposed a general methodology to help verify the ground convergence of a given
equational program in such a way that: (i) the heuristic value of using unjoinable crit-
ical pairs as hints is preserved; (ii) we can break through the wall of non-orientable
equations by means of inductive joinability proof methods; and (iii) we can prove that
our original specification is ground convergent and that its initial algebra semantics has
been preserved by its subsequent extensions using the same inductive joinability proof
techniques.

Future work suggested by this work includes: (i) full mechanization of the inductive
joinability inference system and its integration within the Maude Formal Environment;
(i) further experimentation with these methods on a rich collection of examples; and
(iii) development of new proof techniques complementing those presented here.
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A Church-Rosser Check of the HF-SETS-3 and its Submodules

NFEEEEEEEEEEr e/
--- Welcome to Maude ---
ARRRRRRR RN RRRRAAN
Maude-mfe-hooks 2.7 built: Aug 1 2014 18:22:26
With termination checker extension
Copyright 1997-2014 SRI International
Mon Jan 22 14:03:21 2018

Full Maude 2.7 March 10th 2015

The Maude Formal Environment 1.0c
Inductive Theorem Prover - July 20th 2010
Sufficient Completeness Checker 2a - August 2010
Church-Rosser Checker 3n - December 17th 2012
Coherence Checker 3n - December 17th 2012
Maude Termination Tool 1.5j - August 11th 2014

set include BOOL off
set include TRUTH-VALUE on

Maude> (set include BOOL off .)
rewrites: 33 in Oms cpu (Oms real) (~ rewrites/second)
set include BOOL off

Maude> (select tool CRC .)
rewrites: 76 in lms cpu (lms real) (68345 rewrites/second)
The CRC has been set as current tool.

Maude> (ccr HF-SETS .)
rewrites: 14530655 in 17432ms cpu (20000ms real) (833542 rewrites/second)
Church-Rosser check for HF-SETS
The following critical pairs must be proved joinable:
cp HF-SETS1123 for 11 and 15
true
= M’:Magma in{M’:Magma}.
cp HF-SETS119 for 01 and 63
augment ({M’ :Magma},S:Set)U augment ({#5:Magma},S:Set)
= augment ({M’:Magma},S:Set)U augment ({M’:Magma},S:Set)U augment ({#5:Magma},
S:Set).
cp HF-SETS123 for 01 and 63
augment ({#4:Magma},S:Set)U augment ({#5:Magma},S:Set)U augment ({#6:Magma},
S:Set)
= augment ({#4:Magma},S:Set)U augment ({#4:Magma},S:Set)U augment ({#5:Magma},
S:Set)U augment ({#6:Magma},S:Set).
cp HF-SETS131 for 01 and 63
augment ({#4:Magma},S:Set)U augment ({#5:Magma},S:Set)U augment ({#6:Magma},
S:Set)U augment ({#7:Magma},S:Set)
= augment ({#4:Magma},S:Set)U augment ({#4:Magma},S:Set)U augment ({#5:Magma},
S:Set)U augment ({#6:Magma},S:Set)U augment ({#7:Magma},S:Set).
cp HF-SETS136 for 01 and 63
augment ({#4:Magma},S:Set)U augment ({#5:Magma},S:Set)U augment ({#6:Magma},
S:Set)U augment ({#7:Magma},S:Set)U augment ({#8:Magma},S:Set)
= augment ({#4:Magma},S:Set)U augment ({#5:Magma},S:Set)U augment ({#5:Magma},
S:Set)U augment ({#6:Magma},S:Set)U augment ({#7:Magma},S:Set)U augment({
#8:Magma},S:Set).
cp HF-SETSS5 for 53 and 53
P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma})U
augment (P({#6:Magma}),S:Set),#1:Set)
= P({#6:Magma})U augment(P({#6:Magma}),#1:Set)U augment(P({#6:Magma})U
augment (P({#6:Magma}),#1:Set),S:Set).
cp HF-SETS80 for 01 and 53
P({#3:Magma})U augment (P({#3:Magma}),S:Set)
= P({#3:Magma})U augment (P({#3:Magma}),S:Set)U augment (P({#3:Magma})U
augment (P({#3:Magma}),S:Set),S:Set).
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cp HF-SETS88 for 01 and 63
augment ({M’ :Magma}, S:Set)
= augment ({M’ :Magma},S:Set)U augment({M’:Magma},S:Set).
The module is sort-decreasing.

Maude> (ccr HF-SETS-0 .)
rewrites: 14944931 in 19319ms cpu (22399ms real) (773567 rewrites/second)
Church-Rosser check for HF-SETS-0
The following critical pairs must be proved joinable:
cp HF-SETS-0105 for 01 and 53
P({#5:Magma})U augment (P({#5:Magma}),S:Set)
= P({#5:Magma})U augment (P({#5:Magma}),S:Set)U augment(P({#5:Magma})U
augment (P({#5:Magma}),S:Set),S:Set).
cp HF-SETS-0145 for 01 and 63
augment ({M’ :Magma},S:Set)U augment ({#5:Magma},S:Set)
= augment ({M’:Magma},S:Set)U augment ({M’:Magma},S:Set)U augment ({#5:Magma},
S:Set).
cp HF-SETS-0149 for 01 and 63
augment ({#4:Magma},S:Set)U augment ({#5:Magma},S:Set)U augment ({#6:Magma},
S:Set)
= augment ({#4:Magma},S:Set)U augment ({#4:Magma},S:Set)U augment ({#5:Magma},
S:Set)U augment ({#6:Magma},S:Set).
cp HF-SETS-0157 for 01 and 63
augment ({#4:Magma},S:Set)U augment ({#5:Magma},S:Set)U augment ({#6:Magma},
S:Set)U augment ({#7:Magma},S:Set)
= augment ({#4:Magma},S:Set)U augment ({#4:Magma},S:Set)U augment ({#5:Magma},
S:Set)U augment ({#6:Magma},S:Set)U augment ({#7:Magma},S:Set).
cp HF-SETS-0162 for 01 and 63
augment ({#4:Magma},S:Set)U augment ({#5:Magma},S:Set)U augment ({#6:Magma},
S:Set)U augment ({#7:Magma},S:Set)U augment ({#8:Magma},S:Set)
= augment ({#4:Magma},S:Set)U augment ({#5:Magma},S:Set)U augment ({#5:Magma},
S:Set)U augment ({#6:Magma},S:Set)U augment ({#7:Magma},S:Set)U augment ({
#8:Magma},S:Set).
cp HF-SETS-07 for 53 and 53
P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma})U
augment (P({#6:Magma}),S:Set),#1:Set)
= P({#6:Magma})U augment (P({#6:Magma}),#1:Set)U augment (P({#6:Magma})U
augment (P({#6:Magma}),#1:Set),S:Set).
cp HF-SETS-095 for 01 and 63
augment ({M’ :Magma},S:Set)
= augment ({M’ :Magma},S:Set)U augment({M’:Magma},S:Set).
The module is sort-decreasing.

Maude> (ccr HF-SETS-1 .)
rewrites: 16134529 in 20665ms cpu (23236ms real) (780741 rewrites/second)
Church-Rosser check for HF-SETS-1
The following critical pairs must be proved joinable:
cp HF-SETS-1299 for 01 and 53
P({#3:Magma})U augment (P({#3:Magma}),S:Set)
= P({#3:Magma})U augment (P({#3:Magma}),S:Set)U augment(P({#3:Magma})U
augment (P({#3:Magma}),S:Set),S:Set).
cp HF-SETS-16 for 53 and 53
P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma})U
augment (P({#6:Magma}),S:Set),#1:Set)
= P({#6:Magma})U augment (P({#6:Magma}),#1:Set)U augment (P({#6:Magma})U
augment (P({#6:Magma}),#1:Set),S:Set).
The module is sort-decreasing.

Maude> (ccr HF-SETS-2 .)
rewrites: 16759193 in 21934ms cpu (24382ms real) (764044 rewrites/second)
Church-Rosser check for HF-SETS-2
The following critical pairs must be proved joinable:
cp HF-SETS-2355 for 01 and 53
P({#3:Magma})U augment (P({#3:Magma}),S:Set)
= P({#3:Magma})U augment (P({#3:Magma}),S:Set)U augment (augment (P({
#3:Magma}),S:Set),S:Set).
cp HF-SETS-26 for 53 and 53
P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma}),#1:Set)U
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augment (augment (P({#6:Magma}),S:Set),#1:Set)
= P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma}),
#1:Set)U augment (augment (P({#6:Magma}),#1:Set),S:Set).

The module is sort-decreasing.

Maude> (ccr HF-SETS-3 .)
rewrites: 17061281 in 23124ms cpu (25660ms real) (737786 rewrites/second)
Church-Rosser check for HF-SETS-3
The following critical pairs must be proved joinable:
cp HF-SETS-36 for 53 and 53
P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma}),#1:Set)U
augment (augment (P({#6:Magma}),S:Set),#1:Set)
= P({#6:Magma})U augment (P({#6:Magma}),S:Set)U augment (P({#6:Magma}),
#1:Set)U augment (augment (P({#6:Magma}),#1:Set),S:Set).
The module is sort-decreasing.

B Termination of the HF-SETS-3 and its Submodules

NARRRRRRRRRRRRRRRRYS
--- Welcome to Maude ---
ARRRRRRRRRARRRRARAAN
Maude-mfe-hooks 2.7 built: Aug 1 2014 18:22:26
With termination checker extension
Copyright 1997-2014 SRI International
Thu Jan 18 18:55:33 2018

Full Maude 2.7 March 10th 2015

The Maude Formal Environment 1.0c
Inductive Theorem Prover - July 20th 2010
Sufficient Completeness Checker 2a - August 20160
Church-Rosser Checker 3n - December 17th 2012
Coherence Checker 3n - December 17th 2012
Maude Termination Tool 1.5j - August 11th 2014

Maude> (set include BOOL off .)
rewrites: 33 in Oms cpu (®ms real) (70063 rewrites/second)
set include BOOL off

Maude> (select tool MIT .)
rewrites: 76 in 30ms cpu (30ms real) (2509 rewrites/second)
The MTT has been set as current tool.

Maude> (select external tool aprove .)
rewrites: 39 in 36ms cpu (39ms real) (1065 rewrites/second)
aprove is now the current external tool.

Maude> (ct HF-SETS .)
rewrites: 246282 in 10627ms cpu (26371ms real) (23174 rewrites/second)
Success: The module HF-SETS is terminating.

Maude> (ct HF-SETS-0 .)
rewrites: 259780 in 9831ms cpu (24190ms real) (26422 rewrites/second)
Success: The module HF-SETS-0 is terminating.

Maude> (ct HF-SETS-1 .)
rewrites: 272724 in 11478ms cpu (26165ms real) (23759 rewrites/second)
Success: The module HF-SETS-1 is terminating.

Maude> (ct HF-SETS-2 .)
rewrites: 290161 in 14010ms cpu (28415ms real) (20710 rewrites/second)
Success: The module HF-SETS-2 is terminating.

Maude> (ct HF-SETS-3 .)
rewrites: 305282 in 17145ms cpu (32698ms real) (17805 rewrites/second)
Success: The module HF-SETS-3 is terminating.
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C Sufficient Completeness of the HF-SETS Module

Let Rg = (2, B,I_E>) be obtained from & = (X, E' U B), where 2 is B-preregular and the
axioms B are sort-preserving. Let f: s;...s, — s in 2 be such that the equations in
E defining f, namely {f(Z) = v;}i=1.n are all such that the f@) = v; are substitution
instances of f(xi:s1,...,X,:5,). And let Q C 2 be the subsignature that we claim is

a constructor subsignature for the equations E modulo B. Then f will be sufficiently
complete relative to Q if and only if the following set containment holds:

LfCerzstse s sl S LF@D, ., fa)]y
where, by definition, for t € Ts(X) with Y = vars(¢) and s = Ls(¢)

[£14 ={u € Ts lu=pto Ao e[Y — Tol}

and where

[, tully = (6015 V... UlLDY
Note that [[t]]g = [[té]]g for any ¢ that is a sort-preserving bijection of variables, so that
it is immaterial in [#1, ..., t,,]]g whether the 7; and ¢; have disjoint variables or share any
variables.

Finally, let # # v be an inequality such that vars(u # v) C vars(t). Then, we define
[tlutvl={weTss|lw=ptoc Ao elY = To] Nuo #5 vo}
In what follows, we show that the cover sets

[M13 =[S, (S, M)I§ ¢))
[STZ = [, (M) 2)

are sufficiently complete for each of the defined operators in the HF-SETS module. We
use the SCC tool by J. Hendrix to prove sufficient completeness of the HF-SETS module
without operators _in_ and _&_. The tool can only handle left-linear and conditional
equations, and therefore it cannot handle the specification with these operations. We
proceed modularly. First we prove the specification without these operators sufficiently
complete using the SCC tool, and then prove sufficient completeness of the definitions
of these operators in the following subsections. In the rest of this section we assume
S,8’,S" variables of sort Set and M, M’, M" variables of sort Magma.

C.1 Sufficient completeness of the definition of _in_

Let us show sufficient completeness of the definition of _in_ in the HF-SETS module.
To show sufficient completeness of _in_ we need to show

[MinSTE C S in(S), S in{), {}in {({M}), {M}in{{M'}},
Sin{S’, M}, (S,M)inS’, {M}in{{}}]5 3)
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where Q are the constructors declared for HF-SETS and B its axioms.
By applying (1)) to M on the left of (3)), this is equivalent to

[SinS’, (S, M)inS'15 C IS in{S}, S inf), {}in{({M}}, {M}in{{M'}},
S in{S’, M}, (S,M)inS’, {M}in{{(}}]3
Since the underlined patterns define the same sets, @]) will hold if we can show

LS inS’]]f,? ClSin{S}, Sin{}, {}in{{M}},
{MYin{{M"}}, S in{S", M}, {M}in {{}}]9

By (2) applied on the left to S this is equivalent to showing

IS in{), S in (MY S S in{S), S inQ), (yin{{M}),

{Myin{{M'}}, S in{S’, M}, {M}in{{}}1}
Since the underlined patterns define the same sets, @ will hold if we can show

IS in {M}§ C [[S in{S}, {}in{{M}},
(MYin{({M"}}, S in{(S’, M}, (M}in {(}}1%

By () applied on the left to M this is equivalent to showing

IS in{S’}, S in{S’, M} IS in{S}, {}in{{M})},
{Myin{({M"}), S in{S", M}, (M} in{(}13

23

“

&)

(6)

@)

®)

By observing the corresponding underlined pattern in both sides it is enough to show

IS in{S"}13 € IS in{S} A} in (MY} AMY in ({M}}, {M} in {115
Since

[S in{S'}I5 =[S in{S}S VIS in{S’'}|S = S'1%
it is enough to show

IS in{S'}S # S'15 € [} in (MY}, MY in {{M'}), (M} in {{}}]5
By (@) applied to S on the left this is equivalent to showing

[ in (S # ST5 UMY in{S}{M} # ST;
C [} in {{MY}, AMY in {{M'}}, (M} in {3115

Let us show

[ in{S}I(} # STf C [} in {{MY), (MY in ({M'}), (M} in ({115

®)

10)

an

12)

(13)
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and

LM} in{S}{M} # STF € [{} in UMY, (M} in ({M'}}, M} in ({1}]5 (14)
By applying (2) to S on the left of and {} = {} we get

[} in (MW C I in UMY, AM Y in ({M 1), (M} in {{}}]5 (15)

which always holds. Finally, by applying (Z) to S on the left of (I4) and {M} # {} we
get

LM} in ({115 U LMY in ({M' )} aneoe 15 S LMY in {({M}), {M} in ({}15 (16)

Since [{M}in {({N13 € [(M}in ({}}17 and [{M} in (MW e 15 S LMY in (M)
we can conclude that the definition of the _in_ operation is sufficiently complete.

C.2 Sufficient completeness of the definition of _&_

Since true and false are irreducible constructor terms, we can use the transformation
in [8]] of the equations defining the operator _& _ as:

{1&S" - {}

(S}&S' = {S}if SinS’ — true

{(S}&S’ — {}if SinS’ — false

(S, M}&S’ — (S)U(M}&S")if S inS’ — true
(S, M}&S' > (M} &S’ if SinS’ — false

>

Letus define [ | xiny —* true]]g as the set

[[t|xiny—>*true]]g={w€TQ,s|W=Bt0'/\
o €lZ— Tol A

o(x)ino(y) —>’;_E, 5 true }

where s = Is(?), vars(t) = Z, and x,y € Z have sort Set. And letusdefine [ # | xiny —* false]]g

likewise.
By (@), we have
[S&S'1E =M &SI VIS & SIS VIS, M} & S'1% (17)

By _in _being sufficiently complete, for any u, v € T s, we have either uinv —* true
or uinv —* false. Then,

I[t]]f;2 =[¢t|xiny >* true]]};2 Ullt|xiny —>*false]]g
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And therefore, we can write[T7]as
IS &S15 = [} &S T3
US} &S’ | xiny —" truell;
UI{S} &S’ | xiny —>*false]]g
UIS,M} &S’ | xiny —* true]]f;2
U{S,M} &S’ | xiny —>*false]]g

This shows sufficient completeness of _ & _, since these are exactly the sets of ground
terms for which each of the rules for _ & _ are enabled.

D Checking Rg+ (VX)t L u

Let Rg = (2, B,TE)) with X' = (S, <, F) be the rewrite theory obtained from & = (2, E W
B), and let RZ = (27, B,E)“) extend Rg by:
1. extending (S, <) to (§¥, <¥) by adding to each connected component [s] € §/=< a
top sort [s] with s” < [s] for each s” € [s];
2. adding a fresh new sort Prop with constant t;
3. adding for each [s] € /=< an operator

_~_:[s][s] — Prop
4. adding to E the rules
{x:[s]l=x:[s]>1t|[s]eS/=<}
Lemma 1. For any t,u € Ts(X) with [Is()] = [Is(u)]:
Rer (VX)tlu iff Ror(VX)(t=u) —" 1t
For Rg operationally terminating, Rg + (VX)t | u can be effectively checked in
Maude by executing in the system module mod R endm the search command:
searcht ~u =!1tt.

giving us a decision procedure for deciding Rg + (VX) 1 | u.
Note that the above result applies not just for & = (X, EWB) an unconditional theory,
but also for & conditional and satisfying the requirements in [8]], namely, when Rg is:
1. strongly deterministic;

2. strictly coherent modulo B; and
3. operationally terminating.

Therefore, reasoning about joinability in Rg can be done under conditions (1)—(3)
also for conditional theories and have the equivalence

Rer(VX)tlu iff RZF(VX)(t=u) -" 1t

and the implementation in Maude by search applying as well to conditional theories
satisfying (1)—(3). In particular, this applies to the checking of joinability for the con-
ditional theories of hereditarily finite sets in Section 4} which have some conditional
equations for set intersection.
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