Skip to main content

Proving Structural Properties of Sequent Systems in Rewriting Logic

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11152))

Abstract

General and effective methods are required for providing good automation strategies to prove properties of sequent systems. Structural properties such as admissibility, invertibility, and permutability of rules are crucial in proof theory, and they can be used for proving other key properties such as cut-elimination. However, finding proofs for these properties requires inductive reasoning over the provability relation, which is often quite elaborated, exponentially exhaustive, and error prone. This paper aims at developing automatic techniques for proving structural properties of sequent systems. The proposed techniques are presented in the rewriting logic metalogical framework, and use rewrite- and narrowing-based reasoning. They have been fully mechanized in Maude and achieve a great degree of automation when used on several sequent systems, including intuitionistic and classical logics, linear logic, and normal modal logics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic Comput. 2(3), 297–347 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theoret. Comput. Sci. 360(1–3), 386–414 (2006)

    Article  MathSciNet  Google Scholar 

  3. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48, 551–577 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cervesato, I., Pfenning, F.: A linear logical framework. Inf. Comput. 179(1), 19–75 (2002)

    Article  MathSciNet  Google Scholar 

  5. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: LICS, pp. 229–240. IEEE Computer Society Press (2008)

    Google Scholar 

  6. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

    Book  MATH  Google Scholar 

  7. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, North-Holland, pp. 68–131 (1969)

    Google Scholar 

  8. Girard, J.-Y.: Linear logic. Theoret. Comput. Sci. 50, 1–102 (1987)

    Article  MathSciNet  Google Scholar 

  9. Lahav, O., Marcos, J., Zohar, Y.: Sequent systems for negative modalities. Logica Universalis 11(3), 345–382 (2017)

    Article  MathSciNet  Google Scholar 

  10. Lellmann, B.: Linear nested sequents, 2-sequents and hypersequents. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp. 135–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2_10

    Chapter  MATH  Google Scholar 

  11. Lellmann, B., Pimentel, E.: Proof search in nested sequent calculi. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 558–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_39

    Chapter  Google Scholar 

  12. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Ann. Pure Appl. Logic 56, 239–311 (1992)

    Article  MathSciNet  Google Scholar 

  13. Maehara, S.: Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Math. J. 7, 45–64 (1954)

    Article  MathSciNet  Google Scholar 

  14. Martí-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 1–87. Springer, Dordrecht (2002)

    MATH  Google Scholar 

  15. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Comput. Sci. 96(1), 73–155 (1992)

    Article  MathSciNet  Google Scholar 

  16. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems. Theoret. Comput. Sci. 474, 98–116 (2013)

    Article  MathSciNet  Google Scholar 

  17. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focalization in linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 405–419. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8_31

    Chapter  MATH  Google Scholar 

  18. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and reasoning about proof systems. J. Logic Comput. 26(2), 539–576 (2016)

    Article  MathSciNet  Google Scholar 

  19. Nigam, V., Reis, G., Lima, L.: Quati: an automated tool for proving permutation lemmas. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 255–261. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_18

    Chapter  MATH  Google Scholar 

  20. Pfenning, F.: Structural cut elimination I. Intuitionistic and classical logic. Inf. Comput. 157(1/2), 84–141 (2000)

    Article  MathSciNet  Google Scholar 

  21. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, New York (1996)

    MATH  Google Scholar 

  22. Viry, P.: Equational rules for rewriting logic. Theoret. Comput. Sci. 285(2), 487–517 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments on an earlier draft of this paper. The work of the three authors was supported by CAPES, Colciencias, and INRIA via the STIC AmSud project “EPIC: EPistemic Interactive Concurrency” (Proc. No 88881.117603/2016-01). The work of Pimentel and Olarte was also supported by CNPq and the project FWF START Y544-N23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olarte, C., Pimentel, E., Rocha, C. (2018). Proving Structural Properties of Sequent Systems in Rewriting Logic. In: Rusu, V. (eds) Rewriting Logic and Its Applications. WRLA 2018. Lecture Notes in Computer Science(), vol 11152. Springer, Cham. https://doi.org/10.1007/978-3-319-99840-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99840-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99839-8

  • Online ISBN: 978-3-319-99840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics