
Formal Modeling and Analysis of the
Walter Transactional Data Store

Si Liu1, Peter Csaba Ölveczky2, Qi Wang1, and José Meseguer1

1 University of Illinois, Urbana-Champaign, USA
2 University of Oslo, Oslo, Norway

Abstract. Walter is a distributed partially replicated data store provid-
ing Parallel Snapshot Isolation (PSI), an important consistency property
that offers attractive performance while ensuring adequate guarantees for
certain kinds of applications. In this work we formally model Walter’s
design in Maude and formally specify and verify PSI by model checking.
To also analyze Walter’s performance we extend the Maude specification
of Walter to a probabilistic rewrite theory and perform statistical model
checking analysis to evaluate Walter’s throughput for a wide range of
workloads. Our performance results are consistent with a previous ex-
perimental evaluation and throw new light on Walter’s performance for
different workloads not evaluated before.

1 Introduction

Cloud-based transaction systems provide both a challenge and an opportunity
for the use of formal methods. The challenge has to do with the fact that the
very raison d’être for such system is the need for a carefully chosen compromise
between consistency guarantees and performance. Their massive use requires
them to ensure scalability to large numbers of users with acceptable latency
and throughput, while also guaranteeing the promised consistency properties.
This is a challenge for formally-based design, because many formal methods
tend to solely focus on correctness. Yet, correctness without due performance
is useless for these systems. The opportunities are plentiful, including the fol-
lowing: (1) Many of these systems have never been formally specified, either at
the system specification level or at the property specification level. (2) There
is a need for modularity and conceptual unification in the design of these, cur-
rently quite ad-hoc and monolithic, systems. (3) There is also the prospect of
using formal executable specifications for code generation purposes, achieving
correct-by-construction systems that, by having been thoroughly analyzed in
their correctness and performance aspects, can achieve very high quality.

This work is part of a long-term research effort in which we have been us-
ing Maude to both meet the challenges and exploit the opportunities described
above for cloud-based transaction systems (see [4] for a survey). Specifically,
we exploit the type-(1) opportunity offered by Walter [22], a well-know cloud-
based transaction system that provides an important intermediate consistency

2 S. Liu et al.

guarantee, PSI. Walter is a very good type-(1) opportunity because no formal
system specification exists at all; and there is no formal (or even informal) ver-
ification that it guarantees PSI. Walter is also a good stepping stone towards
placing the design of cloud-based transaction systems in a formally-based mod-
ular framework. The way we are advancing this type-(2) goal is by first sys-
tematically studying system designs that cover the whole spectrum between
lower-guarantees/higher-performance and higher-guarantees/lower-performance
systems. We have already studied several systems in this spectrum, including
RAMP [15,11], our own ROLA design [12], P-Store [19], and Megastore [9]. Wal-
ter has been a key missing design in the spectrum. The essential point is that
case studies spanning the entire correctness/performance spectrum are crucial
for identifying optimal decompositions of these and future systems into modular,
reusable components. Finally, the fact that our Maude specification of Walter
and of the other above-mention systems are executable, also helps us advance
towards exploiting the type-(3) opportunity of achieving high-quality code gen-
eration for formal specifications. In this paper we focus on the type-(1) goal for
Walter, but our sights are aimed at the type-(2)–(3) goals just as much.

Main Contributions and Outline. In Section 2 we give an overview of Wal-
ter, the PSI property and the stronger Snapshot Isolation (SI) property, and
summarize the main features of Maude used in our formal modeling and anal-
ysis. Section 3 provides a detailed formal executable specification of Walter in
Maude. This is a key contribution since, to the best of our knowledge, it is the
first formal specification of Walter. Section 4 formalizes the SI and PSI prop-
erties and formally analyzes for the first time the whether the Walter design
satisfies either of these properties. This analysis is achieved by: (i) providing a
parametric method to generate all initial states for given parameters; and (ii)
performing model checking analysis to verify the SI and PSI properties for all
initial states for various parameter choices. Analyzing complex properties such
as SI and PSI is not easy; we therefore propose a new general method for model
checking such properties by adding a “monitor” to the state which records the
global order of transaction starts and commits/aborts. In this way we can easily
specify and model check SI and PSI; furthermore, this technique should also
be applicable to analyze other consistency properties. Our analysis shows that
the Walter design does indeed satisfy the PSI property for all our initial states
but fails to satisfy the SI property. Section 5 makes four contributions. First,
it extends the Maude model of Walter from a rewrite theory to a probabilistic
rewrite theory by adding time and probability distributions for message delays
to the original specification. Second, it carries out a systematic statistical model
checking analysis of the key performance metric, transaction throughput, under
a wide range of workloads. Third, it confirms that the performance estimates
thus obtained are consistent with (i.e., exhibit similar trends as) those obtained
experimentally for the Walter implementation in [22]. Fourth, it provides new
insights about Walter’s performance beyond the limited ranges for which such
information was available by experimental evaluation in [22]. Finally, related
work is discussed in Section 6, and concluding remarks are given in Section 7.

Formal Modeling and Analysis of Walter 3

2 Preliminaries

2.1 Parallel Snapshot Isolation

To deal with huge amounts of data, cloud-based applications need to partition
their data across distributed sites, and to provide high availability and disas-
ter tolerance, data must be replicated at widely distributed sites. Such partially
replicated data stores have to: (i) maintain some consistency of replicated data,
and (ii) provide some consistency for (multi-partition) transactions that access
data stored at different partitions (e.g., a transaction should not see that Don
is a friend of Benny but that Benny is not a friend of Don). However, ensuring
high degrees of consistency for partially replicated data stores supporting multi-
partition transactions requires a lot of costly coordination, which might lead to
unacceptable delays and throughput for many kinds of applications. Designers
of distributed data stores therefore face a trade-off between providing good con-
sistency properties and high performance. There are a number of consistency
properties, ranging from strong consistency guarantees like serializability all the
way to weak properties such as read atomicity and eventual consistency.

A popular intermediate consistency model provided by commercial database
systems such as Oracle and SQL Server is snapshot isolation (SI) [3]. The idea
is that a multi-partition transaction reads from a snapshot of a distributed data
store that reflects a single commit order of transactions across sites.

In [22], the authors argue that having the same commit order across all
sites is not necessary for social networks and similar applications: it does not
matter much that Vlad in Moscow sees Kim’s post before seeing Benny’s post,
whereas Don in Washington sees Benny’s post before Kim’s post. (Hence Benny
and Kim can commit their (independent) posts without waiting for each other.)
They propose a new consistency model, called parallel snapshot isolation, which
allows different commit orders at different sites, while still guaranteeing:

– recent and “consistent” views: all operations in a transaction read the most
recent version committed at the transaction execution site, as of the time
when the transaction begins;

– no write-write conflicts (the write sets of committed somewhere-concurrent
transactions must be disjoint); and

– preservation of causality across sites, which ensures that both Vlad and
Benny see Kim’s post before seeing Don’s reply to Kim’s post.

In [22] the authors specify PSI by giving some abstract pseudo-code “program”
of a centralized execution that a distribution implementation must emulate.

2.2 Walter

Walter [22] is a partially replicated geo-distributed data store that supports
multi-partition transactions and guarantees/implements PSI.

The key idea to ensure that all operations in a transaction read a consistent
“snapshot” of the distributed data store is that each site s maintains a (local)

4 S. Liu et al.

vector timestamp {site1 7→ k1, . . . , siten 7→ kn} representing a current snapshot
of the state, as seen by site s, where sitej 7→ kj means that the snapshot includes
the first k transactions executed at site sitei. Each time a transactions starts ex-
ecuting at s, the transaction is assigned the current local snapshot/vector times-
tamp of site s. Remote reads can then be performed consistently according to
this snapshot. Another key Walter feature is that each data item has a preferred
site, so that writes at preferred sites can be committed fast (e.g., the sites that
you usually use could be the preferred site for “your” data).

A transaction is executed as follows. When the “host” site s starts executing
the transaction t, t is assigned the current snapshot of s. The site s then executes
the read and write operations in t. For writes, Walter buffers the versions written
in the transaction’s write set. For reads, Walter fetches the latest appropriate
version according to t’s start snapshot, by checking any updates in the write set
and its history of previous updates. If the associated key is not replicated locally,
Walter retrieves the right version remotely from the data item’s preferred site.

When the host site has finished executing the operations in the transaction,
it starts committing the transaction. Read-only transactions and transactions
that only write data items whose preferred site is the host site s can commit lo-
cally (fast commit). Walter then checks whether all versions of each data item in
the history of the local site are unmodified since the start vector timestamp, and
whether all data items are unlocked (i.e., not being committed by another trans-
action). If either check fails, Walter aborts the transaction; otherwise, Walter
can commit the transaction. If a transaction cannot commit locally (slow com-
mit), the executing site s uses the two-phase commit (2PC) protocol to check
whether the transaction can be committed, by asking all the preferred sites of
data items written by t whether t can be committed. If the data items written
by t are unmodified and unlocked at such a site, the site replies with a “yes”
vote and locks the corresponding data items. Otherwise, the site votes “no.” If
the executing site receives a “no” vote, the transaction is aborted and the other
preferred sites are notified and release the appropriate locks. If all votes are “yes”
votes, the transaction can be committed.

If the transaction t can be (fast or slow) committed, the site s marks t as
committed, assigns it a version (s, seqNo) (where seqNo is a local sequence num-
ber), updates the local history with the updates, and propagates t to other sites,
which update their histories and their vector timestamps. To allow f site fail-
ures, a transaction is marked disaster-safe durable if its writes have been logged
at f +1 sites. The propagation protocol first checks whether the transaction can
be marked as disaster-safe durable by collecting acknowledgments from f + 1
sites for each data item. Upon receiving the propagation of a transaction, a site
acknowledges it only after it receives all transactions that causally precede the
propagated transaction (by using the transaction’s start vector timestamp), and
all transactions at the same executing site with a smaller sequence number. The
protocol then checks whether the transaction can be marked as globally visible.
This is done by committing the transaction at all sites. A transaction can be
committed at a remote site when it learns that the transaction is disaster-safe

Formal Modeling and Analysis of Walter 5

durable, all transactions causally preceding the transaction have been committed
locally, and all transactions at the same executing site with a smaller sequence
number have been committed locally.

The paper [22] briefly discusses failure handling, but does not give much
detail. The authors have implemented Walter in about 30K lines of code, and
have implemented Facebook- and Twitter-like applications on top of Walter us-
ing the Amazon EC2 cloud platform to experiment with and evaluate Walter’s
performance in isolation, and as a backend for social networking, in a distributed
setting (with nodes in US, Ireland, and Singapore). They use their distributed de-
ployment to estimate the transaction latency and throughput (committed trans-
actions per second) for read-only, write-only, and 90% read workloads.

The authors to do not prove or justify that Walter actually guarantees PSI.

2.3 Rewriting Logic and Maude

In rewriting logic [17] a concurrent system is specified a as rewrite theory (Σ,E∪
A,R), where (Σ,E ∪ A) is a membership equational logic theory [6], with Σ an
algebraic signature declaring sorts, subsorts, and function symbols, E a set of
conditional equations, and A a set of equational axioms. It specifies the system’s
state space as an algebraic data type. R is a set of labeled conditional rewrite
rules, specifying the system’s local transitions, of the form [l] : t −→ t′ if cond ,
where cond is a condition and l is a label. Such a rule specifies a transition from
an instance of t to the corresponding instance of t′, provided the condition holds.

Maude [6] is a language and tool for specifying, simulating, and model check-
ing rewrite theories. The distributed state of an object-oriented system is for-
malized as a multiset of objects and messages. A class C with attributes att1
to attn of sorts s1 to sn is declared class C | att1 : s1, ..., attn : sn. An
object of class C is modeled as a term < o : C | att1 : v1, ..., attn : vn >,
with o its object identifier, and where the attributes att1 to attn have the current
values v1 to vn, respectively. Upon receiving a message, an object can change its
state and/or send messages to other objects. For example, the rewrite rule

rl [l] : m(O,z) < O : C | a1 : x, a2 : O’ >

=> < O : C | a1 : x + z, a2 : O’ > m’(O’,x + z) .

defines a transition where an incoming message m, with parameters O and z, is
consumed by the target object O of class C, the attribute a1 is updated to x +

z, and an outgoing message m’(O’,x + z) is generated.

2.4 Statistical Model Checking and PVeStA

Probabilistic distributed systems can be modeled as probabilistic rewrite theo-
ries [1] with rules of the form

[l] : t(−→x) −→ t′(−→x ,−→y) if cond(−→x) with probability −→y := π(−→x)

6 S. Liu et al.

where the term t′ has new variables −→y disjoint from the variables −→x in the
term t. The concrete values of the new variables −→y in t′(−→x ,−→y) are chosen
probabilistically according to the probability distribution π(−→x).

Statistical model checking [20,23] is an attractive formal approach to analyz-
ing (purely) probabilistic systems. Instead of offering a yes/no answer, it can ver-
ify a property up to a user-specified level of confidence by running Monte-Carlo
simulations of the system model. We then use PVeStA [2], a parallelization of
the tool VeStA [21], to statistically model check purely probabilistic systems
against properties expressed as QuaTEx expressions [1]. The expected value
of a QuaTEx expression is iteratively evaluated w.r.t. two parameters α and
δ by sampling, until we obtain a value v so that with (1 − α)100% statistical
confidence, the expected value is in the interval [v − δ

2 , v + δ
2].

3 A Formal Model of Walter in Maude

This section defines a formal executable model of Walter in Maude. The whole
model is available at https://sites.google.com/site/siliunobi/walter.

3.1 Data Types, Classes, and Messages

We formalize Walter in an object-oriented style, where the state consists of
a number of replica (or site) objects, each modeling a local database, and a
number of messages traveling between the objects. A transaction is formalized
as an object which resides inside the replica object that executes the transaction.

Some Data Types. A version is a pair version(oid,sqn) consisting of a site
oid where the transaction is executed, and a sequence number sqn local to that
site. A vector timestamp is a map from site identifiers to sequence numbers:

pr MAP{Oid,Nat} * (sort Map{Oid,Nat} to VectorTimestamp) .

The sort OperationList represents lists of read and write operations as terms
such as (x := read k1) (y := read k2) write(k1, x + y), where LocalVar

denotes the “local variable” that stores the value of the key read by the operation,
and Expression is an expression involving the transaction’s local variables:

op write : Key Expression -> Operation [ctor] .

op _:=read_ : LocalVar Key -> Operation [ctor] .

op waitRemote : Key LocalVar -> Operation [ctor] .

pr LIST{Operation} * (sort List{Operation} to OperationList) .

waitRemote(k, x) means that the transaction execution is awaiting the value of
the key (or data item) k from a remote site to be assigned to the local variable x.

Formal Modeling and Analysis of Walter 7

Classes. A transaction is modeled as an object of the following class Txn:

class Txn | operations : OperationList, readSet : ReadSet,

writeSet : WriteSet, localVars : LocalVars,

startVTS : VectorTimestamp, txnSQN : Nat .

The operations attribute denotes the transaction’s remaining operations. The
readSet attribute denotes the versions of data items read by the transaction
as a ‘,’-separated set of pairs versionRead(k,version). writeSet denotes the
write set of the transaction as a map (k1 |-> val1), ..., (kn |-> valn).
localVars maps the transaction’s local variables to their current values. startVTS
refers to the vector timestamp assigned to the transaction when it starts to ex-
ecute, and txnSQN is the transaction’s sequence number given upon commit.

A replica, or site, stores parts of the database, and executes the transactions
for which it is the host/server. A replica is formalized as an object instance of
the following class Replica:

class Replica | history : Datastore, sqn : Nat, gotTxns : ObjectList,

executing : ObjectList, committed : ObjectList,

aborted : ObjectList, committedVTS : VectorTimestamp,

gotVTS : VectorTimestamp, locked : Locks,

votes : Vote, voteSites : TxnSites, abortSites : TxnSites,

dsSites : PropagateSites, vsbSites : TxnSites,

dsTxns : OidSet, gvTxns : OidSet,

recPropTxns : PropagatedTxns, recDurableTxns : DurableTxns .

The history attribute represents the site’s local database, as well as propagated
updates also on data items not stored at the replica, as a map from keys to lists
of updates < value, version >:

op <_,_> : Value Version -> ValueVersion [ctor] .

pr LIST{ValueVersion} * (sort List{ValueVersion} to ValueVersionList) .

pr MAP{Key,ValueVersionList} * (sort Map{Key,ValueVersionList} to Datastore) .

The sqn attribute denotes the replica’s current local sequence number. The at-
tributes gotTxns, executing, committed and aborted denote the transaction
(objects) which are, respectively, waiting to be executed, executing, commit-
ted, and aborted. A site executes transactions sequentially. Concurrent transac-
tions can be modeled by transactions executed at different sites. The attributes
committedVTS and gotVTS indicate for each site how many transactions of that
site have been committed at, respectively, received by, this site. The locked

attribute denotes the locked keys and their associated transactions at this site:

op lock : Oid Key -> Lock . --- Txn Oid locks Key

pr SET{Lock} * (sort Set{Lock} to Locks) .

The votes attribute denotes a collection of votes in the two-phase commit:

8 S. Liu et al.

sort Vote .

op noVote : -> Vote [ctor] .

op vote : Oid Oid Bool -> Vote [ctor] . --- Txn, Participant, vote

op _;_ : Vote Vote -> Vote [ctor assoc comm id: noVote] .

The voteSites attribute refers to, for each transaction, the remaining replicas
from which the coordinator is awaiting votes:

sort TxnSites .

op noTS : -> TxnSites [ctor] .

op txnSites : Oid OidSet -> TxnSites [ctor] .

op _;_ : TxnSites TxnSites -> TxnSites [ctor assoc comm id: noTS] .

Similarly, the attribute abortSites denotes for each transaction the remaining
sites from which the coordinator is awaiting the acknowledgments to abort the
transaction. (The coordinator first notifies the corresponding sites to abort a
transaction, and it will abort it locally after it gets the replies from those sites.)

The remaining attributes refer to the transaction replication. The attributes
dsSites and vsbSites denote the remaining sites from which each transaction
is awaiting acknowledgments to mark itself as disaster-safe durable or globally
visible transaction, respectively. The sort PropagateSites contains the keys in
each transaction’s write set, because for a transaction to be disaster-safe durable
each key must be replicated:

sort PropagateSites .

op noPS : -> PropagateSites [ctor] .

op propagateSites : Oid Key OidSet -> PropagateSites [ctor] .

op _;_ : PropagateSites PropagateSites ->

PropagateSites [ctor assoc comm id: noPS] .

The attributes dsTxns and gvTxns denote the set (of sort OidSet) of disaster-safe
durable and globally visible transactions, respectively. The last two attributes
recPropTxns and recDurableTxns buffer the received propagation and disaster-
safe durable messages from the coordinator.

The state also contains an object mapping each key to the sites storing the
key (these sites are also called the replicas of the key):

class Table | table : ReplicaTable .

Elements of sort ReplicaTable are ‘;;’-separated sets of terms sites(ki,replicasi),
where the list replicasi denotes the sites replicating the key ki. The first element
in such a list is the preferred site of the corresponding key:

sort KeyReplicas .

op [_] : KeyReplicas -> ReplicaTable [ctor] .

op eptTable : -> KeyReplicas [ctor] .

op sites : Key OidList -> KeyReplicas [ctor] .

op _;;_ : KeyReplicas KeyReplicas -> KeyReplicas [ctor assoc comm id: eptTable] .

Formal Modeling and Analysis of Walter 9

Initial state. The following shows an initial state (with some parts replaced by
‘...’) with three replicas, r1, r2, and r3, where r1 and r2 are the coordinators
for, respectively, transactions t1, and t2 and t3. Key x is replicated at r1 and
r2, key y at r2 and r3, and key z at r3 and r1, with r1, r2 and r3 the respective
preferred sites. Transaction t1 is the read-only transaction (xl :=read x) (yl

:=read y), transaction t2 is a write-only transaction write(y, 3) write(z, 8),
while transaction t3 is a read-write transaction on key x. Initially, the value of
each key is [0], and its version is version(0,0):

eq init =

< tb : Table | table : [sites(x, r1 r2) ;; sites(y, r2 r3) ;; sites(z, r3 r1)] >

< r1 : Replica |

gotTxns : < t1 : Txn | operations : ((xl :=read x) (yl :=read y)),

readSet : empty, writeSet : empty,

localVars : (xl |-> [0], yl |-> [0]),

startVTS : empty, txnSQN : 0 >,

history : (x |-> (< [0],version(0,0) >),

z |-> (< [0],version(0,0) >)), sqn : 0, ... >

< r2 : Replica |

gotTxns : < t2 : Txn | operations : (write(y, 3) write(z, 8)), ... >

< t3 : Txn | operations : ((xl := read x)

write(x, xl plus 1)), ... > ... >

< r3 : Replica | history : (y |-> (< [0],version(0,0) >),

z |-> (< [0],version(0,0) >)), ... > .

Messages between sites have the form msg content from sender to receiver .
The message content (or simply message) request(key , txn, vts) sends a read
request for transaction txn to key ’s preferred site to retrieve its state from
the snapshot determined by vector timestamp vts. The preferred site replies
with a message reply(txn, key , value version), where value version is chosen
based on the incoming vector timestamp. The message prepare(txn,keys, vts)
sends the key(s) keys in transaction txn to their preferred sites with the trans-
action’s start vector timestamp vts. Those preferred sites reply with a mes-
sage prepare-reply(txn, vote). The messages abort(txn) and aborted(txn)
are sent out when the coordinator distributes the “abort” decision to the par-
ticipants, and when the participants acknowledge the decision. The message
propagate(txn, sqn, vts,ws) sends a transaction txn’s sequence number sqn,
vector timestamp vts, and write set ws to all sites. The sites reply with a mes-
sage propagate-ack(txn) to acknowledge that the transaction txn has been
propagated successfully. The message ds-durable(txn) is sent to all sites once
the transaction txn has been marked as disaster-safe durable. The sites then
reply with a message visible(txn) to acknowledge the notification.

3.2 Formalizing Walter’s Behavior

This section formalizes the dynamic behavior of Walter using rewrite rules.

10 S. Liu et al.

Starting a transaction. A replica starts executing a transaction by moving
the first transaction TID in gotTxns to executing, and assigns its committed
vector timestamp VTS to the transaction’s start vector timestamp:3

rl [start-txn] :

< RID : Replica | gotTxns : (< TID : Txn | startVTS : empty > ;; TXNS),

executing : emptyTxnList, committedVTS : VTS >

=>

< RID : Replica | gotTxns : TXNS,

executing : < TID : Txn | startVTS : VTS > > .

Executing a transaction. We can now execute the operations of the trans-
action, and start with a read operation X :=read K. There are three cases to
consider: (i) the transaction has already written to key K (buffered in the write
set); (ii) there is no preceding write in the transaction but the executing site
replicates K; or (iii) neither (i) nor (ii) holds.

In case (i), the local variable X is given the value V buffered in the write set:

rl [execute-read-own-write] :

< RID : Replica | executing :

< TID : Txn | operations : ((X :=read K) OPS),

writeSet : (K |-> V, WS), localVars : VARS > >

=>

< RID : Replica | executing :

< TID : Txn | operations : OPS,

writeSet : (K |-> V, WS),

localVars : insert(X,V,VARS) > > .

In case (ii) (the site RID replicates K: localReplica(K,RID,REPLICA-TABLE)),
the replica chooses the last update < V,VERSION > in its local history DS that
is visible to the transaction’s start snapshot VTS:

crl [execute-read-local] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | executing :

< TID : Txn | operations : ((X :=read K) OPS), writeSet : WS,

readSet : RS, localVars : VARS, startVTS : VTS >,

history : DS >

=>

< TABLE : Table | >

< RID : Replica | executing :

< TID : Txn | operations : OPS, localVars : insert(X,V,VARS),

readSet : (versionRead(K,VERSION),RS) > >

if (not $hasMapping(WS,K)) /\ localReplica(K,RID,REPLICA-TABLE) /\

< V,VERSION > := choose(VTS,DS[K]) .

3 We do not give variable declarations, but follow the convention that variables are
written in (all) capital letters.

Formal Modeling and Analysis of Walter 11

In case (iii), the site sends a request message (with the transaction’s start
vector timestamp VTS, since the remote site must choose the version consis-
tent with the snapshot) to K’s preferred site (preferredSite(...)) to fetch the
version. The “next operation” of the transaction changes to waitRemote(K,X):

crl [execute-read-remote] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | executing :

< TID : Txn | operations : ((X :=read K) OPS), writeSet : WS,

startVTS : VTS > >

=>

< TABLE : Table | >

< RID : Replica | executing :

< TID : Txn | operations : (waitRemote(K,X) OPS) > >

(msg request(K,TID,VTS) from RID to preferredSite(K,REPLICA-TABLE))

if (not $hasMapping(WS,K)) /\ (not localReplica(K,RID,REPLICA-TABLE)) .

The remote (preferred) site responds to such a request by sending the snapshot-
consistent value and version (choose(VTS, DS[K])) of the requested key:

rl [receive-remote-request] :

(msg request(K, TID, VTS) from RID’ to RID)

< RID : Replica | history : DS >

=>

< RID : Replica | >

(msg reply(TID, K, choose(VTS, DS[K])) from RID to RID’) .

The executing site then merges the fetched value and version in the local
history, and updates the read set and local variables:

rl [receive-remote-reply] :

(msg reply(TID, K, < V,VERSION >) from RID’ to RID)

< RID : Replica | history : DS, executing :

< TID : Txn | operations : (waitRemote(K, X) OPS), readSet : RS,

localVars : VARS > >

=>

< RID : Replica | executing :

< TID : Txn | operations : OPS,

readSet : (versionRead(K, VERSION), RS),

localVars : insert(X, V, VARS) >,

history : merge(K, < V,VERSION >, DS) > .

When the next transaction operation is a write operation write(K, EXPR),
the expression EXPR to be written is evaluated w.r.t. the current values of the
local variables, and the resulting value is added to the write set:

rl [execute-write] :

< RID : Replica | executing :

< TID : Txn | operations : (write(K, EXPR) OPS),

localVars : VARS, writeSet : WS > >

12 S. Liu et al.

=>

< RID : Replica | executing :

< TID : Txn | operations : OPS,

writeSet : insert(K, eval(EXPR, VARS), WS) > > .

Commit a Transaction. When all the currently executing transaction’s opera-
tions have been performed, the site starts to commit the transaction. A read-only
transaction (writeSet is empty) is committed locally:

rl [commit-read-only-txn] :

< RID : Replica | committed : TXNS’, executing :

< TID : Txn | operations : nil, writeSet : empty > >

=>

< RID : Replica | committed : (TXNS’ ;; < TID : Txn | >),

executing : emptyTxnList > .

There are two cases for committing a write transaction: fast commit if the
executing site is the preferred site of all keys written by the transaction; and slow
commit if the transaction’s write sets contains keys with non-local preferred sites.

Fast Commit. To fast commit a transaction, two checks for conflicts are per-
formed at the site: one check for any modified key, and another check for any
locked key, i.e., a key being committed concurrently by another transaction.
modified(WS, VTS, DS) checks whether there is a key in the write set WS and
a version of that key in the history DS that is not visible to the snapshot VTS,
and locked(WS, LOCKS) checks whether there is a key in WS that also appears
in LOCKS. The following rule shows the case when both checks pass:

crl [fast-commit-success] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | executing :

< TID : Txn | operations : nil, writeSet : WS,

startVTS : VTS, txnSQN : TXNSQN >,

committed : TXNS’, history : DS, locked : LOCKS,

sqn : SQN, committedVTS : VTS’, dsSites : PSTS >

=>

< TABLE : Table | >

< RID : Replica | executing : emptyTxnList,

committed : (TXNS’ ;; < TID : Txn | txnSQN : SQN’ >),

history : update(WS, version(RID,SQN’), DS),

sqn : SQN’, committedVTS : insert(RID, SQN’, VTS’),

dsSites : PSTS ; txnPropagateSites(TID,WS) >

propagateTxn(TID, SQN’, VTS, WS, allSites(REPLICA-TABLE), RID)

if WS =/= empty /\ allLocalPreferred(WS, RID, REPLICA-TABLE) /\

(not modified(WS, VTS, DS)) /\ (not locked(WS, LOCKS)) /\

SQN’ := SQN + 1 .

The site commits the transaction by assigning a new local sequence number
SQN’, and updating the local history (update(...)). The site then propagates

Formal Modeling and Analysis of Walter 13

the transaction to remote sites. This is done by generating propagation messages
using propagateTxn, which produces one propagation message for each site.
The site then keeps track of the sites that have acknowledged the propagation
(txnPropagateSites(...)).

If either check fails, the transaction is aborted:

crl [fast-commit-failed] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | executing :

< TID : Txn | operations : nil, writeSet : WS, startVTS : VTS >,

aborted : TXNS’, history : DS, locked : LOCKS >

=>

< TABLE : Table | >

< RID : Replica | executing : emptyTxnList,

aborted : (TXNS’ ;; < TID : Txn | >) >

if WS =/= empty /\ allLocalPreferred(WS, RID, REPLICA-TABLE) /\

(modified(WS, VTS, DS) or locked(WS, LOCKS)) .

Slow Commit. Slow commit uses two-phase commit among the preferred sites
of the keys in the transaction’s write set. The executing site distributes the
prepare messages to those preferred sites (allPreferredSites(...)), asking
the participants to vote based on whether the corresponding keys are unmodified
and unlocked. The prepare messages are produced by the function prepareTxn:

crl [slow-commit-prepare] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | voteSites : VSTS, executing :

< TID : Txn | operations : nil, writeSet : WS, startVTS : VTS > >

=>

< TABLE : Table | >

< RID : Replica | voteSites : (VSTS ; voteSites(TID,RIDS)),

executing : < TID : Txn | > >

prepareTxn(TID,keys(WS),VTS,RIDS,REPLICA-TABLE,RID)

if WS =/= empty /\ (not allLocalPreferred(WS,RID,REPLICA-TABLE)) /\

RIDS := allPreferredSites(WS,REPLICA-TABLE) /\ (not (TID in VSTS)) .

The receiver of a prepare message performs the two checks as in fast commit:
if either check fails, a false vote is sent back; otherwise, the participant locks
the key(s) and sends back a true vote:

rl [slow-commit-receive-prepare] :

(msg prepare(TID,KS,VTS) from RID’ to RID)

< RID : Replica | locked : LOCKS, history : DS >

=>

if (not locked(KS,LOCKS)) and (not modified(KS,VTS,DS))

then < RID : Replica | locked : (addLock(KS,TID),LOCKS) >

(msg prepare-reply(TID,true) from RID to RID’)

else < RID : Replica | >

(msg prepare-reply(TID,false) from RID to RID’) fi .

14 S. Liu et al.

When the executing replica receives a vote, it first checks whether all votes
have been collected (VSTS’[TID] == empty), and then checks whether all votes
associated to the transaction are true votes (allYes(TID, VOTES’)). If so, the
coordinator decides to propagate the transaction as in the fast commit; other-
wise, the coordinator aborts the transaction, and notifies the participants that
voted true to release the locks. This is done by producing “abort” messages for
the corresponding participants RIDS (propagateAbort(TID,RIDS,RID)). The
following rule shows the “aborted” branch:

crl [slow-commit-receive-vote-abort] :

(msg prepare-reply(TID, FLAG) from RID’ to RID)

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | votes : VOTES, voteSites : VSTS,

abortSites : ABORTS >

=>

< TABLE : Table | >

< RID : Replica | votes : VOTES’, voteSites : VSTS’,

abortSites : ABORTS ; voteSites(TID,RIDS) >

propagateAbort(TID, RIDS, RID)

if VSTS’ := remove(TID, RID’, VSTS) /\

VOTES’ := VOTES ; vote(TID, RID’, FLAG) /\

VSTS’[TID] == empty /\ (not allYes(TID, VOTES’)) /\

RIDS := yesSites(TID, VOTES’) .

The abort procedure is straightforward: the participant releases the lock(s)
held by the transaction TID, and the executing site aborts the transaction:

rl [slow-commit-receive-abort] :

(msg abort(TID) from RID’ to RID)

< RID : Replica | locked : LOCKS >

=>

< RID : Replica | locked : release(TID,LOCKS) >

(msg aborted(TID) from RID to RID’) .

crl [slow-commit-receive-aborted] :

(msg aborted(TID) from RID’ to RID)

< RID : Replica | executing : < TID : Txn | >, aborted : TXNS’,

abortSites : ABORTS >

=>

(if ABORTS’[TID] == empty --- all acks received; abort the txn locally

then < RID : Replica | executing : emptyTxnList,

aborted : (TXNS’ ;; < TID : Txn | >),

abortSites : ABORTS’ >

else < RID : Replica | abortSites : ABORTS’ > fi)

if ABORTS’ := remove(TID,RID’,ABORTS) .

Transaction Propagation. After a transaction commits, the executing site
propagates it to other sites by invoking the propagation protocol. Upon receiv-
ing a propagation message for transaction TID, the receiving site performs two

Formal Modeling and Analysis of Walter 15

checks: (i) whether it has gotten all transactions that causally precede trans-
action TID, and (ii) all transactions from TID’s executing site with a smaller
sequence number. (i) is indicated by VTS’ gt VTS, meaning that the latest
snapshot the site got is greater than the incoming snapshot VTS, and (ii) by
s(VTS’[RID’]) == SQN, meaning that the corresponding latest sequence num-
ber the site got is exactly one smaller than the incoming sequence number SQN.
If either check fails, the site buffers the propagated information regarding the
transaction (nonPropagatedTxns), and waits until the “missing” transactions
are propagated to it; otherwise, the transaction is considered to be propagated
successfully (propagatedTxns), and the site updates its local history (if the site
is not the coordinator itself), and then sends back the acknowledgment:

crl [receive-propagate] :

(msg propagate(TID,SQN,VTS,WS) from RID’ to RID)

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | gotVTS : VTS’, history : DS, recPropTxns : PTXNS >

=>

< TABLE : Table | >

(if s(VTS’[RID’]) == SQN and (VTS’ gt VTS)

then if RID =/= RID’

then < RID : Replica | gotVTS : VTS’’, history : DS’,

recPropTxns : PTXNS’ >

(msg propagate-ack(TID) from RID to RID’)

else < RID : Replica | gotVTS : VTS’’, recPropTxns : PTXNS’ >

(msg propagate-ack(TID) from RID to RID’)

fi

else < RID : Replica | recPropTxns : PTXNS’’ >

fi)

if PTXNS’ := propagatedTxns(TID,SQN,VTS) ; PTXNS /\

PTXNS’’ := nonPropagatedTxns(TID,SQN,VTS,WS,RID’) ; PTXNS /\

VTS’’ := insert(RID’,SQN,VTS’) /\

DS’ := update(locRepWS(WS,RID,REPLICA-TABLE),version(RID’,SQN),DS) .

A failed propagated transaction (nonPropagatedTxns) is acknowledged when-
ever those two checks pass. The site transforms nonPropagatedTxns to propagatedTxns,
and sends back the acknowledgment:

crl [later-propagate-ack] :

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | gotVTS : VTS’, history : DS, recPropTxns :

(nonPropagatedTxns(TID, SQN, VTS, WS, RID’) ; PTXNS) >

=>

< TABLE : Table | >

(if RID =/= RID’

then < RID : Replica | gotVTS : VTS’’, history : DS’, recPropTxns :

(propagatedTxns(TID, SQN, VTS) ; PTXNS) >

(msg propagate-ack(TID) from RID to RID’)

else < RID : Replica | gotVTS : VTS’’, history : DS, recPropTxns :

(propagatedTxns(TID, SQN, VTS) ; PTXNS) >

16 S. Liu et al.

(msg propagate-ack(TID) from RID to RID’)

fi)

if s(VTS’[RID’]) == SQN /\ VTS’ gt VTS /\

VTS’’ := insert(RID’, SQN, VTS’) /\

DS’ := update(locRepWS(WS, RID, REPLICA-TABLE),version(RID’, SQN), DS) .

When the executing site has collected propagation acknowledgments from
f + 1 sites, it marks the transaction as disaster-safe durable. This is done by
the function dsDurable, which counts the number of received acks in dsSites.
The site also distributes the decision to all sites by using function dsDurableTxn

to produce a ds-durable message to each site, and records that information in
vsbSites. If there is no need to distribute the decision, the transaction is marked
as globally visible directly (by adding it to gvTxns):

crl [receive-propagate-ack] :

(msg propagate-ack(TID) from RID’ to RID)

< TABLE : Table | table : REPLICA-TABLE >

< RID : Replica | dsSites : PSTS, vsbSites : VSBS,

committed : (TXNS ;; < TID : Txn | writeSet : WS,

startVTS : VTS, txnSQN : SQN > ;; TXNS’),

dsTxns : DSTXNS, gvTxns : GVTXNS >

=>

< TABLE : Table | >

(if dsDurable(TID,PSTS’)

then if RIDS =/= empty

then < RID : Replica | dsSites : PSTS’, vsbSites : VSBS’,

dsTxns : (TID, DSTXNS) >

dsDurableTxn(TID,RIDS,RID)

else < RID : Replica | dsSites : PSTS’, vsbSites : VSBS’,

dsTxns : (TID, DSTXNS),

gvTxns : (TID, GVTXNS) >

fi

else < RID : Replica | dsSites : PSTS’ >

fi)

if PSTS’ := add(TID,keys(WS),RID’,REPLICA-TABLE,PSTS) /\

(not TID in DSTXNS) /\ RIDS := allServers(REPLICA-TABLE) \ RID /\

VSBS’ := VSBS ; voteSites(TID,RIDS) .

A propagation acknowledgment that arrives after the transaction has been
marked as disaster-safe durable is ignored:

rl [receive-propagate-ack-after-ds-durable-mark] :

(msg propagate-ack(TID) from RID’ to RID)

< RID : Replica | dsTxns : TID , DSTXNS >

=>

< RID : Replica | > .

Upon receiving the “disaster-safe durable” decision, the site tries to commit
the transaction locally:

Formal Modeling and Analysis of Walter 17

crl [receive-ds-durable-visible] :

(msg ds-durable(TID) from RID’ to RID)

< RID : Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : DTXNS, committedVTS : VTS’,

locked : LOCKS >

=>

< RID : Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : (durableTxns(TID) ; DTXNS),

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS) >

(msg visible(TID) from RID to RID’)

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

To commit transaction TID, the site must pass three checks: (i) the propaga-
tion message has been received and acknowledged (propagatedTxns(TID,SQN,VTS)
shown in recPropTxns), (ii) VTS’ is greater than VTS, and (iii) all transactions
from TID’s executing site with a smaller sequence number have been received
(s(VTS’[RID’]) == SQN). A visible message is then sent back, and all corre-
sponding locks are released.

The site fails to commit the transaction immediately after receiving the de-
cision if any check fails. The following rule shows the case when the site has not
yet acknowledged the propagation:

rl [receive-ds-durable-not-visible-not-ack-propagated] :

(msg ds-durable(TID) from RID’ to RID)

< RID : Replica | recPropTxns : (nonPropagatedTxns(TID,SQN,VTS,WS,RID’)

; PTXNS), recDurableTxns : DTXNS >

=>

< RID : Replica | recPropTxns : (nonPropagatedTxns(TID,SQN,VTS,WS,RID’)

; PTXNS), recDurableTxns : (nonDurableTxns(TID,RID’)

; DTXNS) > .

The site commits any failed committed transaction (nonDurableTxns) when-
ever those checks pass, by changing nonDurableTxns to durableTxns. It also
sends back a visible message, updates the committed vector timestamp, and
releases all corresponding locks:

crl [later-visible] :

< RID : Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : (nonDurableTxns(TID,RID’) ; DTXNS),

committedVTS : VTS’, locked : LOCKS >

=>

< RID : Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : (durableTxns(TID) ; DTXNS),

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS) >

(msg visible(TID) from RID to RID’)

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

18 S. Liu et al.

Finally, after receiving visible messages from all sites, the executing site
marks the transaction as globally visible:

crl [receive-visible] :

(msg visible(TID) from RID’ to RID)

< RID : Replica | vsbSites : VSBS, gvTxns : GVTXNS >

=>

(if VSBS’[TID] == empty

then < RID : Replica | vsbSites : VSBS’, gvTxns : (TID , GVTXNS) >

else < RID : Replica | vsbSites : VSBS’ >

fi)

if VSBS’ := remove(TID, RID’, VSBS) .

4 Correctness Analysis

In this section we use reachability analysis—from all initial system configura-
tions up to given bounds on the number of transactions, sites, etc.—to analyze
whether Walter satisfies PSI and SI. To analyze these complex properties, we
use a novel technique which adds a “logical global clock” to record the global
order of transaction starts and commits/aborts.

4.1 Parametric Generation of Initial States

To analyze all possible all initial configurations we introduce a new operator
init so there is a one-step rewrite init(parameters) −→ c0 for each possible
initial configuration c0, and declare a sort for sets of configurations:

sort ConfigSet . subsort Configuration < ConfigSet .

op empty : -> ConfigSet .

op _;_ : ConfigSet ConfigSet -> ConfigSet [assoc comm id: empty] .

We define a function

op initAux : s1 ... sn -> ConfigSet .

such that initAux(params,params ′) generates all possible initial states for such
parameters, and add the following rewrite rule to our model:

var C : Configuration . var CS : ConfigSet .

crl [init] : init(params) => C if C ; CS := initAux(params,params’) .

init’s parameters are the number of read-only transactions, the number of write-
only transactions, the number of read-write transactions, the number of sites, the
number of keys, and the replication factor. Each transaction has two operations.

We start with generating the replica table and key-variable pairs. keyVars
consists of “;”-separated key-variable pairs < k1, var1 > ; ... ; < kn, varn >,
each of which has a key k and the associated local variable var. The function
kvars extracts KEYS key-variable pairs from keyVars:

Formal Modeling and Analysis of Walter 19

--- generate table and key-var pairs:

crl initAux(RTX,WTX,RWTX,SITES,KEYS,RF,none)

=> $initAux(RTX,WTX,RWTX,SITES,KVARS,genKeyVarSet(KVARS),RF,

< 0 : Table | table : initTable(KVARS) >)

if KVARS := kvars(KEYS,keyVars) .

The function initTable initializes the replica table for each key with its replicas
of nil:

--- initialize table with generated keys:

op initTable : KeyVars -> ReplicaTable .

op $initTable : KeyVars ReplicaTable -> ReplicaTable .

eq initTable(KVARS) = $initTable(KVARS,[emptyTable]) .

eq $initTable((< K,VAR > ; KVARS),[KEYREPLICAS]) =

$initTable(KVARS,[sites(K,nil) ;; KEYREPLICAS]) .

eq $initTable(noKeyVar,[KEYREPLICAS]) = [KEYREPLICAS] .

We now generate replicas, assign the keys to them, and update the replica
table accordingly:

--- generate replicas:

rl $initAux(RTX,WTX,RWTX,s PARS,KVARS,KS,RF,C)

=> $initAux(RTX,WTX,RWTX,PARS,KVARS,KS,RF,C

< s PARS : Replica | gotTxns : emptyTxnList, history : empty, sqn : 0,

executing : emptyTxnList, committed : emptyTxnList,

aborted : emptyTxnList, committedVTS : empty, gotVTS : empty,

locked : empty, dsSites : noPS, vsbSites : noVS, dsTxns : empty,

gvTxns : empty, recPropTxns : noPT, recDurableTxns : noDT,

votes : noVote, voteSites : noVS, abortSites : noVS >) .

--- assign keys to replicas and update table accordingly:

crl $initAux(RTX,WTX,RWTX,0,(< K,VAR > ; KVARS),KS,s RF,

< RID : Replica | history : VS >

< 0 : Table | table : [sites(K,RIDS) ;; KEYREPLICAS] > C)

=> $initAux(RTX,WTX,RWTX,0,(< K,VAR > ; KVARS),KS,RF,

< RID : Replica | history : (VS,K |-> (< [0],version(0,0) >)) >

< 0 : Table | table : [sites(K,RIDS RID) ;; KEYREPLICAS] > C)

if not $hasMapping(VS,K) .

Note that, to assign a key to a replica, we nondeterministically add a replica RID

to key K’s replicating sites. Once the key has been assigned to replication factor
replicas, we continue to the next key by resetting the replication factor to rf:

--- next key

rl $initAux(RTX,WTX,RWTX,0,(< K,VAR > ; KVARS),KS,0,C)

=> $initAux(RTX,WTX,RWTX,0,KVARS,KS,rf,C) .

We are now ready to generate transactions. We only illustrate how to generate
read-write transactions; generating read/write-only transactions is similar, and
is given at https://sites.google.com/site/siliunobi/walter.

20 S. Liu et al.

--- generate rw-txns

rl $initAux(RTX,WTX,s RWTX,0,noKeyVar,(< K,VAR >,KS),RF,

< RID : Replica | gotTxns : emptyTxnList > C)

=> $initAux(RTX,WTX,RWTX,0,noKeyVar,(< K,VAR >,KS),RF,

< RID : Replica | gotTxns :

< s RWTX : Txn | operations : ((VAR :=read K) write(K,s RWTX)),

readSet : empty, writeSet : empty, localVars : (VAR |-> [0]),

startVTS : empty, txnSQN : 0 > > C) .

Note that VAR in the key-variable pair < K,VAR > is used to initialize the local
variable VAR |-> [0].

One of 768 initial states generated by init(1,1,1,2,2,2) is

< 0 : Table | table :[replicatingSites(k1,1 2) ;; replicatingSites(k2,2 1)]>

< 1 : Replica | gotTxns : (< 3 : Txn | localVars :(k1l |->[0], k2l |->[0]),

operations :((k2l :=read k2) (k1l :=read k1)), ... >),

history :(k1 |-> <[0], version(0,0)>,

k2 |-> <[0], version(0,0)>), ... >

< 2 : Replica | gotTxns :(< 2 : Txn | localVars :(k1l |->[0], k2l |->[0]),

operations :(write(k2,1) write(k1,2)), ... > ;;

< 1 : Txn | localVars : k2l |->[0],

operations :((k2l :=read k2) write(k2,1)), ... >),

history :(k1 |-> <[0], version(0,0)>,

k2 |-> <[0], version(0,0)>), ... >

where both k1 and k2 are replicated at sites 1 and 2, and have preferred sites 1
and 2, respectively. Site 1 has one read-only transaction to execute, and site 2

has one write-only and one read-write transaction to execute.

4.2 Analyzing the Correctness Properties

This section formalizes SI and PSI as reachability properties and analyzes them
using Maude. To analyze these properties we add to the state an object

< m : Monitor | clock : clock, log : log >

which stores crucial information about the whole execution. The clock is a kind of
“logical global clock” that totally orders transaction starts and commits/aborts.
This logical global clock is incremented by one every time a transaction starts
executing, and every time a transaction is committed or aborted somewhere.
The log maps each transaction to a record record(rid , issueTime,finishTime,
committed , reads,writes), with rid the transaction’s host site, issueTime its is-
sue “time” according to the logical global clock, finishTime its commit/abort
“times” at each site, committed a flag that is true if the transaction is commit-
ted, reads its key/versions read, and writes its write set.

We modify our rewrite rules to update the Monitor whenever a transaction
starts or is committed/aborted somewhere. For example, when a site commits
a propagated transaction, the monitor records the commit time GT for that
transaction at site RID and increments the logical global time by one:

Formal Modeling and Analysis of Walter 21

crl [receive-ds-durable-visible] :

(msg ds-durable(TID) from RID’ to RID)

< M : Monitor | clock : GT,

log : (TID |-> record(RID’,T1,VTS1,true,READS,WRITES)

, LOG) >

< RID : Replica | recPropTxns : (propagatedTxns(TID,SQN,VTS) ; PTXNS),

recDurableTxns : DTXNS, committedVTS : VTS’,

locked : LOCKS >

=>

< M : Monitor | clock : GT + 1 ,

log : (TID |-> record(RID’,T1,insert(RID,GT,VTS1) ,

true,READS,WRITES) , LOG) >

< RID : Replica | recDurableTxns : (durableTxns(TID) ; DTXNS),

committedVTS : insert(RID’,SQN,VTS’),

locked : release(TID,LOCKS) >

(msg visible(TID) from RID to RID’)

if VTS’ gt VTS /\ s(VTS’[RID’]) == SQN .

Since Walter is terminating if a finite number of transactions are issued, we
check the consistency properties by inspecting this monitor object in the final
states, when all transactions have finished.

Formalizing Snapshot Isolation. SI is defined by two properties in [22]:

– SI-1 (Snapshot Read): All operations in a transaction read the most recent
committed version as of time when the transaction began.

– SI-2 (No Write-Write Conflicts): The write sets of each pair of committed
concurrent4 transactions must be disjoint.

We analyze SI-1 (and all other properties) by searching for a reachable final
state whose system log shows that the execution did not satisfy the property.
The following function p1-si returns true if and only the system log at the end
of the execution shows that property SI-1 is satisfied:

op p1-si : Log -> Bool .

ceq p1-si(TID1 |-> record(RID1,TS1,VTS1,true,(v(X,V),RS),WS) ,

TID2 |-> record(RID2,TS2,(RID |-> TC,VTS2),true,RS’,

(v(X,V),WS’)) ,

TID3 |-> record(RID3,TS3,(RID’ |-> TC’,VTS3),true,RS’’,

(v(X,V’),WS’’)) , LOG) = false

if V =/= V’ /\ TC’ < TS1 /\ TC’ > TC .

ceq p1-si(TID1 |-> record(RID1,TS1,VTS1,true,

(v(X,version(0,0)),RS),WS) ,

TID2 |-> record(RID2,TS2,(RID |-> TC,VTS2),true,RS’,

(v(X,V),WS’)) , LOG) = false

4 Two committed transactions are concurrent if one of them has a commit timestamp
between the start and the commit timestamp of the other.

22 S. Liu et al.

if TC < TS1 .

eq p1-si(LOG) = true [owise] .

The first equation handles the case when a transaction TID1 reads another trans-
action TID2’s versions written (matched by v(X,V)), while the most recent com-
mitted version from TID1’s perspective is in fact v(X,V’) (denoted by the con-
dition, where TID3’s commit time TC’ is between TID1’s start time TS1 and
TID2’s commit time TC). The second equation handles the case when a transac-
tion reads the initial version, in which case any other version committed before
the transaction began serves as the most recent committed version.

Likewise, the function p2-si inspects the system log and returns true if and
only if the recorded execution satisfies property SI-2:

op p2-si : Log -> Bool .

ceq p2-si(TID1 |-> record(RID1,TS1,VTS1,true,RS,(v(X,V),WS)),

TID2 |-> record(RID2,TS2,(RID |-> TC,VTS2),true,RS’,

(v(X,V’),WS’)), LOG) = false

if TC > TS1 /\ TC < max(VTS1) .

eq p2-si(LOG) = true [owise] .

The first equation characterizes the case when SI-2 does not hold: There are two
transactions TID1 and TID2 that both wrote key/data item X (since v(X, V) and
v(X, V’) are in the respective write sets). Furthermore, some site RID committed
TID2 at logical time TC, which comes after the start time TS1 of TID1 but before
the latest commit time (max(VTS1)) of TID1. The committed (flags are true)
transactions TID1 and TID2 were therefore concurrent and wrote the same key,
and hence we have a write-write conflict.

Formalizing Parallel Snapshot Isolation. As mentioned in Section 2.1, PSI is
given by three properties [22]:

– PSI-1 (Site Snapshot Read): All operations read the most recent committed
version at the transaction’s site as of time when the transaction began.

– PSI-2 (No Write-Write Conflicts): The write sets of each pair of committed
somewhere-concurrent5 transactions must be disjoint.

– PSI-3 (Commit Causality Across Sites): If a transaction T1 commits at a site
A before a transaction T2 starts at site A, then T1 cannot commit after T2
at any site.

The following function p1-psi checks whether or not the execution recorded
in the system log satisfied PSI-1, by returning false if there was a transaction
that did not read the most recent committed version at its site when it began:

5 Two transactions are somewhere-concurrent if they are concurrent at either of their
sites.

Formal Modeling and Analysis of Walter 23

op p1-psi : Log -> Bool .

ceq p1-psi(TID1 |-> record(RID1,TS1,VTS1,true,(v(X,V),RS),WS),

TID2 |-> record(RID2,TS2,(RID1 |-> TC,VTS2),true,RS’,

(v(X,V),WS’)) ,

TID3 |-> record(RID3,TS3,(RID1 |-> TC’,VTS3),true,RS’’,

(v(X,V’),WS’’)) , LOG) = false

if V =/= V’ /\ TC’ < TS1 /\ TC’ > TC .

ceq p1-psi(TID1 |-> record(RID1,TS1,VTS1,true,

(v(X,version(0,0)),RS),WS) ,

TID2 |-> record(RID2,TS2,(RID1 |-> TC,VTS2),true,RS’,

(v(X,V),WS’)) , LOG) = false

if TC < TS1 .

eq p1-psi(LOG) = true [owise] .

In the first equation, the transaction TID1, hosted at site RID1, has a version
v(X, V) in its read set. This version was written by transaction TID2. However,
there is a transaction TID3 that wrote version v(X, V’) and was committed at
RID1 after TID2 was committed at RID1 (TC’ > TC) and before TID1 started
executing (TC’ < TS1). Hence, the version v(X, V) read by TID1 was too old.

The second equation above defines the bad case when a transaction TID1

hosted at RID1 reads the initial version v(X, version(0,0)) even though there
was a version v(X,V) written by a transaction TID2 that committed at RID1

before TID1 began executing (TC < TS1).
The function p2-psi checks whether PSI-2 holds in the execution reflected

in the system log, by checking whether there is a write-write conflict between
any pair of committed somewhere-concurrent transactions in the system log:

op p2-psi : Log -> Bool .

ceq p2-psi(TID1 |-> record(RID1, TS1, (RID1 |-> TC , VTS1), true, RS,

(v(X,V), WS)) ,

TID2 |-> record(RID2, TS2, (RID1 |-> TC’ , VTS2), true, RS’,

(v(X,V’) , WS’)) , LOG) = false

if TC’ > TS1 and TC’ < TC .

eq p2-psi(LOG) = true [owise] .

This is similar to the equation for p2-si. The difference is that we check whether
the transactions with the write conflict are concurrent at the transaction TID1’s
site RID1. Here, TID2 commits at RID1 at time TC’, which is between TID1’s
start time TS1 and its commit time TC at RID1.

Finally, we define a function p3-psi that analyzes PSI-3 by checking whether
there was “bad situation” in which a transaction TID1 committed at site RID2 be-
fore a transaction TID2 started at site RID2 (TC1 < TS2), while TID1 committed
at site RID after TID2 committed at site RID (TC1 > TC2):

24 S. Liu et al.

op p3-psi : Log -> Bool .

ceq p3-psi((TID1 |-> record(RID1, TS1, (RID2 |-> TC , RID |-> TC1 , VTS1),

true, RS, WS),

TID2 |-> record(RID2, TS2, (RID1 |-> TC’ , RID |-> TC2 , VTS2),

true, RS’, WS’) , LOG)) = false

if TC < TS2 /\ TC1 > TC2 .

eq p3-psi(LOG) = true [owise] .

Analysis Results. We have analyzed Walter from all initial states with up to
3 transactions, 2 sites, 2 keys, and 2 replicas per key. The following command
searches for a reachable final state where the log shows that SI-1 is violated:

Maude> (search [1] init(1,0,2,2,2,2) =>!

< M:Oid : Monitor | log : LOG:Log > C:Configuration

such that not p1-si(LOG:Log) .)

Solution 1

...

LOG:Log --> 1 |-> record(2,1,(1 |-> 6, 2 |-> 3),true,

v(k1,version(0,0)),v(k1,version(2,1))),

2 |-> record(1,0,1 |-> 2,false,empty,empty),

3 |-> record(1,4,1 |-> 5,true,

(v(k1,version(0,0)), v(k2,version(0,0))),empty) ...

The counterexample shows a long fork anomaly that violates SI-1: transac-
tion 3 read version v(k1,version(0,0)), while it should have read version
v(k1,version(2,1)) to satisfy SI. The reason is that when transaction 3 be-
gins (at time 4), transaction 1 has already committed on site 2 (at time 3),
and therefore the most recent committed version for transaction 3 to read is
version(2,1). The anomaly happens because transaction 1 committed on site
1 at time 6, which is after transaction 3 established the snapshot at time 4.

Table 1. Results from model checking Walter against SI and PSI with up to 3 trans-
actions, 2 sites, 2 keys and 2 replicas per key; × indicates that a counterexample was
found, and X shows that no counterexample was found.

SI-1 SI-2 PSI-1 PSI-2 PSI-3

1 read-only, 2 read-write × × X X X
1 read-only, 1 write-only, 1 read-write × × X X X

3 read-write × × X X X
2 read-only, 1 read-write × X X X X
2 read-only, 1 write-only × X X X X

We have also performed our analysis with other combinations of 3 transac-
tions. Table 1 summarizes our analysis results, showing that PSI is satisfied in

Formal Modeling and Analysis of Walter 25

all our cases. Each search command took about 2 hours (worst-case) to execute
on a 3.4 GHz × 8 Intel Core i7-2600 CPU with 11.7 GB memory.

5 Performance Estimation by Statistical Model Checking

In this section we use PVeStA statistical model checking to estimate the per-
formance of Walter. Our evaluations are consistent with those measured exper-
imentally in [22]. In addition, we evaluate Walter in a wider range of settings
than in [22], thereby providing further insight about Walter. For example, the
experiments with fast commit in [22] assume full replication, whereas we also
experiment with a partially replicated setting (which necessitates remote reads,
etc.), and with workloads involving both slow and fast commits.

5.1 Probabilistic Modeling of Walter

For statistical model checking in PVeStA we need to eliminate nondetermin-
ism in the untimed nondeterministic model in Section 3, and for performance
estimation we need to add time and probabilities. All of this can be achieved
by following the techniques in [8] and probabilistically assign to each message a
delay. The idea is that if each rewrite rule is triggered by the arrival of a mes-
sage (either directly, or indirectly by becoming enabled as a result of applying
a rule that is triggered by the arrival of a message) and the delay is sampled
probabilistically from a dense/continuous time interval, then the probability that
two messages have the same delay is 0, and hence no two actions are enabled
simultaneously, eliminating nondeterminism and introducing time.

In more detail, nodes send messages of the form [∆,rcvr <- msg], where ∆
is the message delay, rcvr is the recipient, and msg is the message content. When
time ∆ has elapsed, this message becomes a ripe message {T,rcvr <- msg},
where T is the “current global time” (used for analysis purposes only). Such a
ripe message must then be consumed by the receiver rcvr before time advances.

We exemplify with the rule [receive-remote-request] how we have trans-
formed the untimed non-probabilistic rewrite rules to the timed and probabilis-
tic setting. In the probabilistic rule below, the incoming message request is
equipped with the current global time T, and the outgoing message reply is
equipped with a delay D sampled from the probability distribution distr(...):

rl [receive-remote-request-prob] :

{T, RID <- request(K, TID, VTS, RID’)}

< RID : Replica | history : DS >

=>

< RID : Replica | >

[D , RID’ <- reply(TID, K, choose(VTS, DS[K]), RID)]

with probability D := distr(...) .

26 S. Liu et al.

5.2 Extracting Performance Measures from Executions

This time we add to the state the monitor object

< m : Monitor | log: log >.

The clock is no longer needed, since now “real” time is given by the message ar-
rival times. Furthermore, since we now analyze transaction throughput and delay,
the log is simpler: a list of records record(tid , issueTime,finishTime, committed),
with tid the transaction identifier, issueTime its issue time, finishTime its com-
mit/abort time, and committed a flag that is true if tid is committed.

We define a number of functions on (states with) such a monitor that ex-
tract different performance metrics from this “execution log.” The function
throughput computes the number of committed transactions per time unit:

op throughput : Config -> Float [frozen] .

eq throughput(< M : Monitor | log: LOG > REST)

= committedNumber(LOG) / totalRunTime(LOG) .

where committedNumber gives the number of committed transactions in LOG:

op committedNumber : Record -> Float .

op $committedNumber : Record Float -> Float .

eq committedNumber(RECORD) = $committedNumber(RECORD,0.0) .

eq $committedNumber((record(TID,T1,T2,true) ; RECORD),NUMBER) =

$committedNumber(RECORD,NUMBER + 1.0) .

eq $committedNumber((record(TID,T1,T2,false) ; RECORD),NUMBER) =

$committedNumber(RECORD,NUMBER) .

eq $committedNumber(noRecord,NUMBER) = NUMBER .

and totalRunTime returns the time when all transactions are finished (i.e., the
largest finishTime in LOG):

op totalRunTime : Record -> Float .

op trt : Record Float -> Float .

eq totalRunTime(RECORD) = trt(RECORD,0.0) .

eq trt((record(TID,T1,T2,FLAG) ; RECORD),T) =

if T2 > T then trt(RECORD,T2) else trt(RECORD,T) fi .

eq trt(noRecord,T) = T .

5.3 Experimental Setup

We performed our experiments with 100 (read-only and/or write-only) transac-
tions, 1 or 5 operations per transaction, 100 keys, and up to 4 sites. The number
of sites and the transaction size are the same as in the experiments in [22]. We
used lognormal message delay distributions with parameters µ = 3 and σ = 1
for local delays, and µ = 1 and σ = 2 for remote delays.

Formal Modeling and Analysis of Walter 27

Generating initial states. Statistical model checking verifies a property up to
a user-specified level of confidence by running Monte-Carlo simulations from a
given initial state. We use an operator probInit to probabilistically generate ini-
tial states: probInit(rtx,wtx, rwtx, sites, keys, rf , rops,wops, rwops, distr)
generates an initial state with rtx read-only transactions, wtx write-only trans-
actions, rwtx read-write transactions, sites sites, keys keys, rf replication level,
rops operations per read-only transaction, wops operations per write-only trans-
action, rwops operations per read-write transactions, and distr the key access
distribution (the probability that an operation accesses a certain key). To cap-
ture the fact that some keys may be accessed more frequently than others, we
also use Zipfian distributions in our experiments.

Each PVeStA simulation starts from probInit, which rewrites to a differ-
ent initial state in each simulation. The reason is that this expression involves
generating certain values—such as the transactions—probabilistically.

5.4 Statistical Model Checking Results

 0

 10

 20

 30

 40

 50

 60

 70

1 2 3 4

T
h

ro
u

g
h

p
u

t
(t

x
n

/t
im

e
 u

n
it
)

Number of Sites

Read−Only Workload with Zipf

read−tx size=1
read−tx size=5

 0

 50

 100

 150

 200

1 2 3 4

T
h

ro
u

g
h

p
u

t
(t

x
n

/t
im

e
 u

n
it
)

Number of Sites

Write−Only Workload with Zipf

write−tx size=1
write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

T
h

ro
u

g
h

p
u

t
(t

x
n

/t
im

e
 u

n
it
)

Number of Sites

90% Read−Txns Workload with Zipf

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

T
h

ro
u

g
h

p
u

t
(t

x
n

/t
im

e
 u

n
it
)

Number of Sites

90% Read−Txns Workload with Uniform

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

Fig. 1. Throughput with fast commit under different workloads.

The plots in Fig. 1 show the throughput with only fast commit as a function
of the number of sites, with read-only, write-only or 90% reads workload, and

28 S. Liu et al.

with uniform and Zipfian distributions. The plots show that read throughput
scales nearly linearly with the number of sites; write throughput also grows with
the number of sites, but not linearly. With a mixed workload, throughput is
mostly determined by the transaction size. Our results are consistent with those
in [22]. For uniform distribution we only plot the results with a mixed workload.

 0

 50

 100

 150

 200

1 2 3 4

T
h

ro
u

g
h

p
u

t
(t

x
n

/t
im

e
 u

n
it
)

Number of Sites

Write−Only Workload with Zipf

FC write−tx size=1
FC & SC write−tx size=1
FC write−tx size=5
FC & SC write−tx size=5

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4
T

h
ro

u
g

h
p

u
t

(t
x
n

/t
im

e
 u

n
it
)

Number of Sites

90% Read−Txns Workload with Uniform

read−tx size=1, write−tx size=1
read−tx size=1, write−tx size=5
read−tx size=5, write−tx size=1
read−tx size=5, write−tx size=5

Fig. 2. Throughput with fast commit (FC) and slow commit (SC).

The plots in Fig. 2 show the throughput with mixed (both fast and slow)
commit protocols under the same experimental settings as in Fig. 1. As shown
in the left plot, throughput is mostly determined by the transaction size in the
mixed workload; the trends of, and the differences among, various transaction
sizes are consistent with those in Fig. 1. We only plot the results with Zipfian
distribution, which are consistent with those with uniform distribution.

Our Maude model—including the infrastructure for statistical model checking—
is around 1.8K LOC. Computing the probabilities took a couple of minutes on
30 servers, each with a 64-bit Intel Quad Core Xeon E5530 CPU with 12 GB
memory. Each point in the plots represents the average of 3 statistical model
checking results. The confidence level for all our statistical experiments is 95%.

6 Related Work

Maude and PVeStA have been used to model and analyze the correctness and
performance of a number of distributed data stores: the Cassandra key-value
store [13,14,16], RAMP [11,15], Google’s Megastore [9,10], and P-Store [19].
In contrast to these papers, our paper formalizes a different state-of-the-art
algorithm, Walter, and, in particular, shows how the snapshot isolation and
parallel snapshot isolation consistency models can be formalized and analyzed
in Maude. In [12] we use PVeStA to compare the performance of our own new
ROLA design with that of Walter. However, that paper focused on ROLA, and
did not present the formalization of Walter or the SI and PSI properties.

Formal Modeling and Analysis of Walter 29

In other applications of formal methods for distributed data stores, engi-
neers at Amazon have used TLA+ and its model checker TLC to model and
analyze the correctness of key parts of Amazon’s celebrated cloud computing
infrastructure [18]. In contrast to our work, they only use formal methods for
correctness analysis. The designers of the TAPIR transaction protocol for dis-
tributed storage systems have also specified and model checked correctness (but
not performance) properties of their design using TLA+ [24].

The papers [5,7] formalize a number of consistency models, including SI and
PSI, but do not show how to analyze these properties.

7 Conclusions

We have formally analyzed and verified in Maude the design of Walter [22], a
partially replicated distributed data store providing multi-partition transactions
and guaranteeing parallel snapshot isolation (PSI), an important consistency
property that offers attractive performance while providing adequate guarantees
for certain kinds of applications. No formal specification of Walter existed before
this work. Furthermore, PSI was only informally described by pseudo-code in
[22] and no formal verification existed. This work has used model checking and
systematic generation of initial states to verify that Walter satisfies PSI for all
such states. We have also extended the Maude specification of Walter to model
time and probabilistic communication delays as a probabilistic rewrite theory,
and have then used statistical model checking analysis to study Walter’s latency
and throughput performance for a wide range of workloads. The results of the
statistical model checking analysis are consistent with the experimental results
in [22] but offer also new insights about Walter’s performance for a wider range
of workloads than those evaluated experimentally in [22].

We view this work as a stepping stone towards two substantially more am-
bitions goals: (1) Walter’s design is an important data point in the consis-
tency/performance spectrum of cloud-based data storage systems. In the near
future we plan to use the experience gained in modeling and analyzing Walter
and other designs in this spectrum to build a library of formally specified compo-
nents supporting the modular design of new cloud-based data storage systems.
(2) We also plan to use Walter’s executable specification in Maude for code gen-
eration purposes to obtain high-quality implementations directly from formally
analyzed designs. Our experience strongly suggests that high levels of system
quality and reliability could be achieved by systematically deriving cloud-based
system implementations from thoroughly analyzed formal designs.

References

1. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2) (2006)

2. AlTurki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and quan-
titative analysis tool. In: CALCO’11. LNCS, vol. 6859. Springer (2011)

30 S. Liu et al.

3. Berenson, H., Bernstein, P.A., Gray, J., Melton, J., O’Neil, E.J., O’Neil, P.E.: A
critique of ANSI SQL isolation levels. In: SIGMOD 1995. pp. 1–10. ACM (1995)

4. Bobba, R., Grov, J., Gupta, I., Liu, S., Meseguer, J., Ölveczky, P.C., Skeirik,
S.: Design, formal modeling, and validation of cloud storage systems us-
ing Maude. Tech. rep., University of Illinois at Urbana-Champaign (2017),
http://hdl.handle.net/2142/96274

5. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: CONCUR. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2015)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude, LNCS, vol. 4350. Springer (2007)

7. Crooks, N., Pu, Y., Alvisi, L., Clement, A.: Seeing is believing: A client-centric
specification of database isolation. In: PODC 2017. pp. 73–82. ACM (2017)

8. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Statistical model checking
for composite actor systems. In: WADT’12. LNCS, vol. 7841. Springer (2013)

9. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Specification, Algebra, and Software. LNCS, vol. 8373.
Springer (2014)

10. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: SEFM. LNCS, vol. 8702. Springer
(2014)

11. Liu, S., Ölveczky, P.C., Ganhotra, J., Gupta, I., Meseguer, J.: Exploring design
alternatives for RAMP transactions through statistical model checking. In: Proc.
ICFEM’17. LNCS, vol. 10610. Springer (2017)

12. Liu, S., Ölveczky, P.C., Santhanam, K., Wang, Q., Gupta, I., Meseguer, J.: ROLA:
A new distributed transaction protocol and its formal analysis. In: FASE 2018.
LNCS, Springer (2018), to appear. Extended version available at https://sites.
google.com/site/fase18submission/

13. Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. Leibniz Transactions on
Embedded Systems 4(1), 03:1–03:26 (2017)

14. Liu, S., Nguyen, S., Ganhotra, J., Rahman, M.R., Gupta, I., Mesegue, J.: Quan-
titative analysis of consistency in NoSQL key-value stores. In: QEST 2015. pp.
228–243 (2015)

15. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: SAC’16. ACM
(2016)

16. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: ICFEM’14. LNCS, vol. 8829. Springer (2014)

17. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96(1), 73–155 (1992)

18. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Communications of the ACM
58(4), 66–73 (2015)

19. Ölveczky, P.C.: Formalizing and validating the P-Store replicated data store in
Maude. In: WADT 2016. LNCS, vol. 10644. Springer (2017)

20. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: CAV’05. LNCS, vol. 3576. Springer (2005)

21. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: A statistical model-checker and
analyzer for probabilistic systems. In: QEST’05. IEEE Computer Society (2005)

Formal Modeling and Analysis of Walter 31

22. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: SOSP 2011. ACM (2011)

23. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

24. Zhang, I., Sharma, N.K., Szekeres, A., Krishnamurthy, A., Ports, D.R.K.: Build-
ing consistent transactions with inconsistent replication. In: Proc. Symposium on
Operating Systems Principles, (SOSP’15). ACM (2015)

