CHALMERS

UNIVERSITY OF TECHNOLOGY

What the Stack? On Memory Exploitation and Protection in Resource
Constrained Automotive Systems

Downloaded from: https://research.chalmers.se, 2024-04-26 05:44 UTC

Citation for the original published paper (version of record):

Lautenbach, A., Almgren, M., Olovsson, T. (2018). What the Stack? On Memory Exploitation and
Protection in Resource Constrained Automotive Systems. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
10707 LNCS: 185-193. http://dx.doi.org/10.1007/978-3-319-99843-5 17

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

What the Stack? On Memory Exploitation and
Protection in Resource Constrained Automotive
Systems

Aljoscha Lautenbach, Magnus Almgren, Tomas Olovsson

Chalmers University of Technology, Gothenburg, Sweden,
aljoscha@chalmers.se, magnus.almgren@chalmers.se,
tomas.olovsson@chalmers.se

Abstract. This is the authors’ version of this paper. The final authen-
ticated version is available online at https://www.doi.org/10.1007/
978-3-319-99843-5_17.

The increased connectivity of road vehicles poses significant challenges
for transportation security, and automotive security has rapidly gained
attention in recent years. One of the most dangerous kinds of security
relevant software bugs are related to memory corruption, since their suc-
cessful exploitation would grant the attacker a high degree of influence
over the compromised system. Such vulnerabilities and the corresponding
mitigation techniques have been widely studied for regular IT systems,
but we identified a gap with respect to resource constrained automotive
systems.

In this paper, we discuss how the hardware architecture of resource con-
strained automotive systems impacts memory exploitation techniques
and their implications for memory protection. Currently deployed sys-
tems have little to no protection from memory exploitation. However,
based on our analysis we find that the simple and well-known measures
like stack canaries, non-executable RAM, and to a limited extent memory
layout randomization can also be deployed in this domain to significantly
raise the bar for successful exploitation.

Keywords: Embedded System Security, Electronic Control Unit, Re-
source Constraints, Memory Exploitation, Memory Protection

1 Introduction

In the automotive domain, considerations of safety have a long tradition in vehi-
cle development. Security considerations on the other hand, often called “cyber-
security” to distinguish from physical security, are still relatively new.

Several recent developments necessitate the introduction of security mea-
sures. One such development is the gradual introduction of “Intelligent Transport
Systems (ITS)” which aims to improve traffic flow and safety through real-time
information exchange between traffic participants and traffic infrastructure. In-
cidentally, with the advent of self-driving cars, the correct functioning of these

“Intelligent Transport Systems” will be crucial. Another factor is the emergence
of the “Internet of Things” which opens the door to machine-to-machine com-
munication and interoperability to facilitate completely new types of services,
including automotive services such as remote diagnostics or smartphone apps to
control vehicle functions. This offers a large attack surface to potential attackers.

Newly manufactured vehicles have around 50 - 100 electronic control units
(ECUs), which are specialized microcontrollers of differing complexity, connected
in smaller networks, forming one large internal network. The vulnerability of the
in-vehicle network and their connected systems has consistently been highlighted
and demonstrated by security researchers for several years [1-4]. The work by
Miller and Valasek was particularly media-effective [5-9].

Meanwhile, in the world of desktop computers and servers, an arms race
between memory exploit writers and memory protection developers has been
going on for decades [10,11]. Ever more advanced defensive techniques inspire
ever more creative and complicated attacks. Due to the limited hardware capabil-
ities and limited connectivity, automotive systems and other embedded systems
have not been primary targets for such exploits. But with increased connectivity
and computing capabilities, this is slowly changing. Therefore it is important to
understand how effective such exploits could be in the automotive domain, and
what trade-offs are required to deploy known mitigation techniques.

2 Resource Constrained Microcontrollers

Due to cost, power and size constraints, microcontrollers have limited capa-
bilities and very particular architectures. In the following we will sketch the
most typical hardware and processor architecture [12-16]. The specifications of
a typical resource constrained microcontroller used for safety-critical automotive
applications are listed in Table 1.

Table 1. Highlights of typical ranges of resource constrained microcontroller configu-
rations

l Hardware ‘Speciﬁcation Most Common

RAM 4 KB - 500 KB 40 KB
Flash Memory (256 KB - 6 MB 1 MB
Processor Speed| 16 - 150 MHz 80 MHz

All modern microcontrollers (MCUs) support at least two different execution
modes: privileged and unprivileged mode [16]. Applications generally execute in
unprivileged mode, whereas the operating system executes in privileged mode.

There are several different types of memory: flash memory, for the boot
loader, OS and other program code; data flash, for permanent data storage;
RAM, for dynamic state information; and often there is memory-mapped I/0.
The different kinds of memory are commonly mapped into a single, linear 32-
bit address space. The concrete mapping is configurable. For instance, the flash

memory could be mapped into 0x00000000 - 0x009FFFFF, and the RAM into
0x00A00000 - OxOOAFFFFF, as depicted in figure 1.

Flash RAM Data | Mem.-Mapped
Memory Flash | Input/Output
0x00000000 0x00A0Q0000 0x00BO0000O 0x00CO0000

Fig. 1. An example of a linear memory address space mapping

The amount of available RAM is very limited. Every task has a statically
assigned memory region dedicated to it; there is no wvirtual memory [16]. For
instance, the first OS task could have its dynamic memory in the address range
O0xOOAFFFFF - 0x00AFFDO1, while the second task would have range 0x00AFFDOO
- 0x00AFFCO01. This mapping is ordinarily enforced by a memory protection unit
(MPU), which is available on most microcontrollers. This unit keeps track which
memory regions are readable, writable or executable. If, for instance, Task 2 tries
to access the stack of Task 1, and they were configured to be in separate memory
regions, the MPU will not allow the access. This is illustrated in figure 2. Note
that the stack grows downwards, as usual.

0x00000000 0x00000200 0x00060000 0x00070000
Flash Memory: Boot
Task 1 Task 2 Task 3
(code) ldr

/
7

Task 1 Task 2
RAM: Status ?czkcli Status -;atzkclf
(TCB) (TCB)
0XOOAFFFFF 0X00AFFD 0O OX00AFFCO0

|[¢&——— Taskl memory space ——pl¢——— Task 2 memory space ——»|

Fig. 2. Static task memory mapping into RAM

Two data structures are relevant for running tasks and thus kept in RAM:
(1) the task control block (TCB), which keeps status information, and (2) the
call stack. The common microcontroller architectures are link-register based, i.e.,
they keep track of the next return address in a special CPU register (the link-
register 1r) [16]. Before a function call, the return address (1r) is pushed on the

stack, just like on x86. There are some minor differences in stack-handling among
the architectures: on ARM, for instance, parameters are loaded from registers
rather than from the stack. Regularly, RAM is executable; this can be neces-
sary to reprogram the flash memory outside a workshop, e.g., for unsupervised
firmware upgrades.

The flash memory contains all program code: the boot loader, the operating
system and application code. Since the RAM is too small to contain the operating
system code and the code of the programs, everything is executed directly from
flash. A context switch from one task to another then simply requires that the
registers are stored for later retrieval, that the task status is changed and that
the current execution mode is updated. Finally the program counter (pc) is
changed to point to the task to be executed next.

To summarize the main differences with x86 type architectures in desktops
and servers: there is no heap, there are no dynamically loaded libraries or shared
objects and there is no virtual memory. Furthermore, the code is executed di-
rectly from flash, and RAM is statically mapped.

3 Exploiting Memory-Related Software Bugs and
Protection Mechanisms

Given the architecture outlined in the previous section, we will now look into
possible memory corruption bugs, how they can be exploited, and possible pro-
tection mechanisms.

3.1 Stack-based Buffer Overflows and Stack Canaries

During the design and development of automotive systems, great care is taken
not to introduce memory corruption bugs due to their safety implications, for
instance by enforcing the MISRA C guidelines which help to reduce software
bugs. However, memory corruption bugs still occur occasionally, and when they
do, they also pose a security risk. Using dynamic memory during run-time is
generally forbidden in automotive software; all memory must be statically as-
signed. Therefore, most memory corruption bugs commonly found on regular
PCs, such as heap-based memory corruption bugs or string-formatting errors,
are not a priority. However, the most common type of memory corruption bug,
stack-based buffer overflows [11], can occur.

An important observation is that the principles of exploiting stack-based
buffer overflows are the same for all common architectures. As long as the return
address is written to the stack, buffer overflows can be exploited by an attacker.
Since the available RAM is rather limited, the attack code needs to be fairly
compact, but this will not stop an attacker from finding useful exploits. Even an
extremely short exploit which crashes the targeted task can be dangerous.

Stack canaries, also known as stack cookies or stack-guards [17], can be used
to detect and prevent buffer overflow exploits. They write a random canary
value before the return address on the stack, and before a function returns, the

main() frame func() frame

status variables 'L | canary | vuln_buf
(TCB) addr. -

Ox0OAFFFFF 0x00AFFFAD 0x00AFFF80 Ox00AFFF70

Fig. 3. Memory layout of a vulnerable task using a canary

canary value is validated. If the value changed, program integrity can no longer
be guaranteed, and a memory exception is triggered. Figure 3 depicts a simple
stack using a canary: if the vulnerable buffer vuln_buf in func() overflows, the
canary in front of the saved return address will be overwritten, and the program
will be aborted before the potential attack code written to vuln_buf can be
executed. This comes at the expense of performance, but it is an effective safe-
guard. There are techniques to circumvent canaries [11], but they make successful
exploitation of stack-based memory corruption bugs harder.

3.2 Non-executable RAM and Return Oriented Programming

The straight-forward exploitation of a buffer overflow only works if the RAM
is executable [18]. As mentioned earlier, an executable RAM is often necessary
during firmware upgrades, but since all code is stored in flash memory, most of
the time RAM can, and should, be non-executable.

To prevent regular buffer overflow exploitation, it is common practice in
desktop operating systems to make the data section non-executable; all major
processor architectures have hardware support for this. In response, attackers
have found ways to circumvent non-executable stacks with so called code-reuse
attacks. One of the first attacks of this kind is called “return-into-lib¢” [19], and
it was shown to be Turing complete: arbitrary computations can be achieved
with this technique [20]. There is an even more fine-grained code-reuse tech-
nique called return oriented programming (ROP) [21]. Instead of using an entire
function, the attacker uses gadgets, trailing function code snippets before a re-
turn instruction. The attack is then composed of a chain of fake stack frames
pointing to gadgets. A key point for code-reuse attacks to work is that the gadget
locations in memory are known.

Applying these techniques to the world of constrained automotive systems,
one will find many similarities and a few differences. Since the microcontrollers
we consider have no virtual memory, the entire memory space is addressable,
within the confines of the MPU. Therefore, it should be possible to construct
a working exploit using ROP, since all memory addresses are known a priori.
Moreover, since everything is statically compiled, an exploit which works for a
single ECU will work for all ECUs of the same type, implying that a resourceful
attacker can study one vehicle to write an exploit which works across the fleet.

Successful construction of a ROP attack requires a substantial number of
gadgets within the process or task address space. On regular PCs, these gadgets

are relatively easy to find in shared libraries. Since there are no shared libraries
in resource constrained automotive systems, and the code base of the executing
tasks is typically small, it is not certain that a sufficient number of gadgets can
be found. Furthermore, ROP attacks require more space than a regular attack
since every gadget, each containing a small number of instructions, requires its
own stack frame. When RAM is very limited, this additional space may be a
problem for successful exploitation.

The practical construction of ROP exploits on resource constrained automo-
tive systems should be thoroughly studied by the security community to explore
their feasibility.

3.3 Compile-time memory layout randomization

On desktop systems, the answer to return oriented programming is memory
layout randomization: the stack and the shared libraries are loaded at random
locations in virtual memory, rather than in predictable ones. This makes suc-
cessful exploitation much harder.

Due to the static memory in constrained automotive systems, this technique
can not be applied directly. However, it can still be utilized by randomizing the
program memory mappings at compile-time. This would make them different for
every ECU, and consequently, writing consistent exploits would be harder. The
downside is that it would require custom images for every ECU.

Another caveat, apart from the potential production difficulties, is that the
entropy is very low. Layout randomization has been shown to be relatively inef-
fective on regular 32-bit systems, due to low entropy of the memory locations [22].
However, this is only true under certain conditions, and it should be investigated
if the same conditions also hold in resource constrained automotive systems.

4 Discussion

In this paper, we have discussed several simple measures that could be imple-
mented to improve security, but further investigations are necessary to judge the
cost and effectiveness of these mitigation techniques.

The first measure would be to add stack canaries to detect and prevent the
exploitation of buffer overflows. The main concern with this technique is the
associated performance degradation since automotive systems have strict real-
time requirements and any impact on performance must be carefully evaluated.
Nevertheless, the simplicity of canaries and their long use in desktop operating
systems make them a very good candidate for immediate adoption, and the costs
should be manageable.

The second measure would be to ensure that RAM is generally non-executable.
RAM should only be executable when necessary, e.g., during (authenticated)
firmware upgrades. Since virtually all microcontrollers include a memory pro-
tection unit, this should be relatively straight-forward and cheap to implement.

Non-executable RAM raises the bar for successful exploitation significantly, so
this is another good candidate for immediate adoption.

The third measure, compile-time memory layout randomization, may help to
combat attacks via return oriented programming. However, this technique has
several practical difficulties. Changing the production process so that every ECU
uses a slightly different image may be very costly. Given the cost, the added level
of protection may be too small, and it aims to protect against complex attacks
which currently are not likely to occur since simpler attacks will work. Therefore,
this technique is unlikely to be adopted soon, but in anticipation of future ROP
attacks on ECUs, it should be further investigated and improved.

There is also a new trend in the automotive industry to consolidate several
smaller ECUs onto a single, more powerful ECU, as a result of efforts to reduce
weight, costs, power and fuel consumption. The ECU architecture will resemble
regular PCs, including virtual memory and complex operating systems. Never-
theless, it is unlikely that the light-weight ECUs as described in this paper will
disappear quickly, and they still need to be secured.

5 Conclusion

With the advent of intelligent transport systems, the internet of things and self-
driving cars, the protection of vehicles against malicious manipulation becomes
ever more important. We have discussed three memory protection mechanisms
to hinder successful exploitation of memory corruption bugs: stack canaries,
non-executable RAM and compile-time memory layout randomization.

Since code typically executes directly from flash memory, and since memory
protection units are in wide-spread use, we highly recommend to make RAM
non-executable. When necessary, executing from RAM can be allowed for specific
events such as firmware upgrades. Similarly, stack canaries have a proven track
record, and their performance impact can be measured and accounted for, so
we also highly recommend to adopt them in automotive systems. The idea of
compile-time memory layout randomization on the other hand has serious flaws
at this point, and it requires more work to be a viable protection mechanism.
The analysis in this paper clearly shows that additional protection mechanisms
are urgently needed, and that the techniques are readily available.

Finally, it should also be noted that the issues discussed in this paper are
not necessarily unique to the automotive domain, and probably apply to a wide
number of embedded systems.

Acknowledgments

We would like to thank all anonymous reviewers for their valuable feedback. The
research leading to these results has been partially supported by the HoliSec
project (2015-06894) funded by VINNOVA, the Swedish Governmental Agency
for Innovation Systems, and by the Swedish Civil Contingencies Agency (MSB)
through the project “RICS”.

References

10.

11.

12.

13.

14.

15.

16.

Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In:
Workshop on Embedded Security in Cars. (2004)

Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security
analysis of a modern automobile. In: 2010 IEEE Symposium on Security and
Privacy (SP), IEEE (2010) 447-462

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: Proceedings of the 20th USENIX Se-
curity Symposium, San Francisco, CA, USA (August 2011) 77-92

Kleberger, P., Olovsson, T., Jonsson, E.: Security aspects of the in-vehicle network
in the connected car. In: 2011 IEEE Intelligent Vehicles Symposium (IV). (June
2011) 528533

Greenberg, A.: Hackers remotely kill a jeep on the highway—with me in it. Ac-
cessed: 2017-06-01. Wired.com (2015) https://www.wired.com/2015/07 /hackers-
remotely-kill-jeep-highway /.

Greenberg, A.: Hackers remotely kill a jeep on the highway—with me in it.
Accessed: 2017-06-01. Wired.com (2016) https://www.wired.com/2016/08/jeep-
hackers-return-high-speed-steering-acceleration-hacks/.

Valasek, C., Miller, C.: Adventures in Automotive Networks and Control Units.
Technical report, Defcon 21 (August 2013) http://www.ioactive.com/pdfs/ IOAc-
tive_Adventures_in_Automotive_Networks_and_Control_Units.pdf.

Miller, C., Valasek, C.: A survey of remote automotive attack surfaces.
Technical report, Defcon 22 (August 2014) http://blog.hackthecar.com/wp-
content/uploads/2014/08/236073361-Survey-of-Remote-Attack-Surfaces.pdf.
Miller, C., Valasek, C.: Remote Exploitation of an Unaltered
Passenger Vehicle. Technical report, Defcon 23 (August 2015)
http://illmatics.com/Remote%20Car%20Hacking.pdf.

Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: Eternal War in Memory. In: 2013
IEEE Symposium on Security and Privacy (SP). (May 2013) 48-62

Van der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H.: Memory errors: the past,
the present, and the future. In: Proceedings of the 15th International Symposium
on Research in Attacks, Intrusions, and Defenses, Springer (2012) 86-106
Quigley, C.P., McMurran, R., Jones, R.P., Faithfull, P.T.: An investigation into
cost modelling for design of distributed automotive electrical architectures. In:
2007 3rd Institution of Engineering and Technology Conference on Automotive
Electronics. (June 2007) 1-9

Mayer, A., Hellwig, F.: System performance optimization methodology for In-
fineon’s 32-bit automotive microcontroller architecture. In: Proceedings of the
Conference on Design, Automation and Test in Europe. DATE ’08, New York,
NY, USA, ACM (2008) 962-966

Erjavec, J., Thompson, R.: Automotive technology: a systems approach. Cengage
Learning (2014)

Gali, P., Violante, M.: Automotive embedded software architecture in the multi-
core age. In: 2016 21st IEEE European Test Symposium (ETS). (May 2016) 1-8
ARM: ARMvT7-M architecture reference manual. Technical report (December
2014)

17.

18.

19.

20.

21.

22.

Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: Stackguard: automatic adaptive detection and preven-
tion of buffer-overflow attacks. In: USENIX Security. Volume 98. (1998) 63-78
Aleph One: Smashing the stack for fun and profit. Phrack magazine 7(49) (1996)
14-16

Solar Designer: Getting around non-executable stack (and fix).
http://seclists.org/bugtraq/1997/Aug/63 (August 1997)

Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the ex-
pressiveness of return-into-libc attacks. In: Proceedings of the 14th International
Symposium on Research in Attacks, Intrusions, and Defenses, Springer (2011) 121—
141

Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, ACM (2007) 552-561

Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security. CCS ’04, New York, NY,
USA, ACM (2004) 298-307

