®

Check for
updates

Neural Networks as Artificial
Specifications

I. S. Wishnu B. Prasetya®)® and Minh An Tran

Utrecht University, Utrecht, The Netherlands
s.w.b.prasetya@uu.nl

Abstract. In theory, a neural network can be trained to act as an arti-
ficial specification for a program by showing it samples of the programs
executions. In practice, the training turns out to be very hard. Programs
often operate on discrete domains for which patterns are difficult to dis-
cern. Earlier experiments reported too much false positives. This paper
revisits an experiment by Vanmali et al. by investigating several aspects
that were uninvestigated in the original work: the impact of using dif-
ferent learning modes, aggressiveness levels, and abstraction functions.
The results are quite promising.

Keywords: Neural network for software testing - Automated oracles

1 Introduction

Nowadays, many systems make use of external services or components to do some
of their tasks, allowing services to be shared, hence reducing cost. However, we
also need to take into account that third parties services may be updated on
the fly as our system is running in production. If such an update introduces an
error, this may affect the correctness of our system as well. One way to guard
against this is by doing run time verification [2]: at the runtime the outputs of
these services are checked against their formal specifications. Unfortunately, in
practice it is hard to persuade developers to write formal specifications.

A more pragmatic idea is to use ‘artificial specifications’ generated by a com-
puter. Another use case is automated testing. Tools like QuickCheck, Evosuite,
and T3 [3,6,13] are able to generate test inputs, but if no specification is given,
only common correctness conditions such as absence of crashes can be checked.
Using artificial specifications would extend their range.

Although we cannot expect a computer to be able to on its own specify the
intent of a program, it can still try to guess this intent. One way to do this is by
observing some training executions to predict general properties of the program,
e.g. in the form of ‘invariants’ (state properties) [5], finite state machine [12],
or algebraic properties [4]. These approaches cannot however capture the full
functionality of a program, e.g. [5] can only infer predefined families of predicates,

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018. All Rights Reserved
I. Medina-Bulo et al. (Eds.): ICTSS 2018, LNCS 11146, pp. 135-141, 2018.
https://doi.org/10.1007/978-3-319-99927-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99927-2_11&domain=pdf
http://orcid.org/0000-0002-3421-4635

136 1. S. W. B. Prasetya and M. A. Tran

many are simple predicates such as o # null and x4y > 0. With respect to these
approaches, neural networks offer an interesting alternative, since they can be
trained to simulate a function [9)].

The trade off of using artificial specifications is the additional overhead in
debugging. When a production-time execution violates such a specification, the
failure may be either caused by an error triggered by the execution, or by an
error in the training executions that were reflected in the predictions, or due
to inaccuracy of the predictions. The first two cases expose errors (though the
second case would take more effort to debug). However, the failure in the last
case is a false alarm (false positive). Since we do not know upfront if a violation
is a real error or a false positive, we will need to investigate it (debugging),
which is quite labour intensive. If it turns out to be a false positive, the effort is
wasted. Despite the potential, studies on the use of neural networks as artificial
specifications are few: [1,10,11,14]. They either reported unacceptably high rate
of false positives, or do not address the issue.

In this paper we revisit an experiment by Vanmali et al. [14] that revealed
~16% rate of false positives—a rate of above 5% is likely to render any approach
unusable in practice. The challenge lies in the discrete nature of the program
used as the experiment subject, making it very hard to train a neural network.
This paper explores several aspects that were left uninvestigated in the original
work, namely the influence of different learning modes, aggressiveness levels, and
abstraction. The results are quite promising.

2 Neural Network as an Artificial Specification

Consider a program P that behaves as a function I — O. An artificial specifi-
cation ¢ is a predicate I x O — bool; ¢(z, P(x)) = T means that P’s output is
judged as correct, and else incorrect. With respect to the intended specification
G, ¢’s judgment is a true positive is when both ¢ and G judge a T, a true negative
is when they agree on the judgement F, a false positive is when ¢ judges F and
G judges T, and a false negative is when ¢ judges T and G judges F.

An neural network (NN) is a network of ‘neurons’ [9] that behaves as a
function RM — RY. We will restrict ourselves to feed forward NNs (FNNs)
where the neurons are organized in linearly ordered layers [9]; an example is
below:

In I — o— O
InI; —
In I, — o— O,

The first layer is called the input layer, consisting of M neurons connected to the
inputs. The last layer is the output layer, consisting of N neurons that produce the
outputs. The layers in between are called hidden layers. An input neuron simply
passes on its input, else it has k inputs and an additional input called ‘bias’ whose
value is always 1 [9]. Each input connector has a weight w;. The neuron’s out-
put is the weighted sum of its inputs, followed by applying a so-called activation

Neural Networks as Artificial Specifications 137

function: out = f (Bo<i<k w;.z;). A commonly used f is the logistic function,
which we also use in our experiments.

Any continuous numeric function RM — RY, restricted within any closed
subset of RM, can be simulated with arbitrary accuracy by an FNN [7], which
implies that an FNN can indeed act as an artificial specification for P, if P
is injectable into such a numeric function. That is, there exists a continuous
numeric function F:RM — RY and injections my:I — RY and 7o:0 — R¥ such
that F encodes P: for all z € I, P(x) = 75" (F(m(2))). However, finding a right
FNN is hard. A common technique to find one is by training an FNN using a
set of sample inputs and outputs, e.g. using the back propagation [9] algorithm.
It might be easier to train the NN to simulate a o P instead, where « is some
chosen abstraction on P’s output values. The trade off is that we get a weaker
specification.

Since an NN does not literally produce a bool, we couple its output vector
z' = NN(7;(%)) to a so-called comparator C : RN — RY — bool to calculate the
judgement by comparing z’ with the observed output z = mo(a(P(Z))). Basi-
cally, if their values are ‘far’ from each other, then the judgement is F, and else
T. By adjusting what ‘far’ means we can tune the specification’s aggressiveness
without having to tamper with the NN’s internals. In our experiments (below),
the identity function id = (Az . x) will be used as the injector 7; and 7. Because
id simply passes on its input, it will be omitted from the formulas.

3 Experiments

Figure 1 shows a credit approval program from the financial domain that was
used as the experiment subject by Vanmali et al. [14]. The program takes 8
input parameters describing a customer. The output is a pair (b,y) where b is a
boolean indicating whether the credit request is approved, and if so y specifies
the maximum allowed credit. We will ignore b since [14] already shows that
an FNN can accurately predict its value. Despite its size, the subject is quite
challenging for an NN to simulate because it operates on a discrete domain (the
numeric values are all integers). The whole input domain has 224000 possible
values. We will use an FNN with 8 inputs (representing approve’s inputs) and a
hidden layer with 24 neurons (adding more layers and neurons does not really
improve the FNN’s accuracy).

Five variations of the FNN will be used, as listed below, along with the used
comparator C. C is parameterized with aggressiveness level A (integer 0 (least
aggressive) ... 5) that determines C’s policy to deal with non clear-cut cases.

1. The FNN direct has one output, which is trained to simulate y. Its comparator
C4 uses Euclidian distance, with sensitivity linearly scaled by A: Ca(y,y") =
ly — ¢'| < €maz — 0.01A, with €,,4, = 0.09.

138 1. S. W. B. Prasetya and M. A. Tran

1 approve(Citizenship ,State , Region,Sex,Age, Marital,Dependents,Income) {
2 if (Region==5 || Region==6) Amount=0

3 else if(Age<18) Amount=0 ;

4 else {

5 if(Citizenship==0) {

6 Amount = 5000+1000%Income

7 if (State==0)

8 if (Region==3 || Region==4) Amount = Amount*2 ;
9 else Amount = (int)(Amountx1.50) ;

10 else Amount = (int)(Amount*1.10) ;

11 if(Marital==0)

12 if (Dependents >0) Amount = Amount+200xDependents
13 else Amount = Amount+500;

14 else Amount = Amount+1000 ;

15 if (Sex==0) Amount = Amount+500

16 else Amount = Amount+1000;

17

18 else {

19 Amount = 1000 + 800 * Income;

20 if(Marital==0)

21 if (Dependents >2) Amount = Amount+100«Dependents
22 else Amount = Amount+100 ;

23 else Amount = Amount+300 ;

24 if (Sex==0) Amount = Amount+100

25 else Amount = Amount+200

27 if (Amount==0) Approved=F else Approved=T;
28 return (Approved ,Amount); }

Fig. 1. The experiment subject: a credit approval program from [14].

2. The FNN uniy has N outputs, trained to simulate oy o approve. The abstrac-

tion oy maps approve’s y output to a vector z : [O.O..l.O]N representing one
of N uniform sized intervals in y’s range [0..18000], such that the k-th inter-
val is represented by a vector of 0’s except a single 1 at the k-th position. If
©: [0.0..1.0]V, let winner(9) be the index of the greatest element in v.
The comparator is more complicated. An obvious case is when 2z’ = NN(z)
and Z = ajg(approve(Z)) report the same winner. If the NN’s winner is con-
fident of itself, approve’s output is judged as correct. When they produce
different winners and the NN’s winner is confident of itself, we judge approve
to be incorrect. Other cases are non-clear-cut and judged depending on the
aggressiveness level. The full definition of C4 is shown below. The original
work Vanmali et al. [14] only uses A = 3 aggressiveness level.

function C4 (%, %)
k,j < winner(Z),winner(2’) ; agree «— k =j
if agree A |agree — Zj| < thiow then (obvious match) T
else if magree A |agree — Zj| > thpign then (obvious mismatch) F
else (non-clear-cut cases) case A of
: (least aggressive: always accept) T
1: (reject when the NN contradicts agreement) —(agree A [T — 2| > thnign)
2 : (always accept on agreement) agree
3: (Vanmali et al. [14]: accept on conflicting results) —agree V |T — 2;\ > thhigh
4
5

(e}

: (only accept if NN’s winner supports z) |agree — 25| < thiow
: (most aggressive: never accept) F
end function

The thresholds thje,, and thyign are set to 0.2/0.8.

Neural Networks as Artificial Specifications 139

3. The FNN uniminy is a less presumptuous variant of uni, with thjey /thnign
set to 0.1/0.9. This will cause more cases to be regarded as non-clear-cut.

4. The FNN lower y is like uniy, but trained to simulate ay o low o approve. low
is used to ‘stretch’ a to divide y into finer intervals in the lower region of y’s
range, e.g. if we believe the region to be more error prone, and growing coarser
towards the other end. We use the log function to do this: K *log(1l + y/a)
with K = 8000 and a = 100 controlling the steepness.

5. The FNN centery is like uniy, but trained to simulate any o ctr o approve.
ctr is used to ‘stretch’ an to divide y into finer intervals in the center region
of y's range. We use logistic function ctr(y) = M/(1 + e~*¥=0-5M)) where
M = 18000 (y’s maximum) and a = 0.0006 control the function’s steepness.

Training. We randomly generate 500 distinct inputs (from the space of 224000
values) and collect the corresponding approve’s outputs. This set of 500 pairs
(input,output) forms the training data. For every type of FNN above and every
aggressiveness level an FNN is trained. N controls the granularity of the used
abstraction, so we also try various N (10..60). For each FNN, the connections’
weight is randomly initialized in [—0.5..0.5]. The training is done in a series of
epochs using the back propagation algorithm [9]. We tried both the incremental
learning mode [8,9], where the FNN’s error is propagated back after each training
input, and batch learning modes, where only the average error is propagated
back, after the whole batch of training inputs (500 of them). Incremental learning
is thus more sensitive to the influence of individual inputs.

Evaluation. To evaluate the FNNs’ ability to detect errors, we run them on 21
erroneous variations (mutants) of the subject as in [14]—due to limited space they
are not shown here. For each mutant, 500 distinct random inputs are generated,
whose outputs are ‘error exposing’ (distinguishable from the corresponding out-
puts of the correct subject). As an artificial specification, an FNN should ideally
reject all these error exposing outputs. Each rejection is a true positive. We also
generate 500 distinct random inputs and feed it to the (unmutated) subject. The
FNN should accepts the corresponding outputs—each rejection is a false positive.

Figure 2 shows some of the results. Except for direct, the training was done in
1500 epochs with learning rate 0.5. We can see that using abstraction improves
the FNN’s performance: compare direct with unigg. The latter obtains a true
positive rate 68% on aggressiveness 2, implying that out of two erroneous exe-
cutions, unisg is likely to detect at least one, while when the aggressiveness level
is set low, its rate of false positives is only around 2%. Abstraction also makes
training easier: after 1500 epochs unizg produces a mean square error (MSE) of
~0.0001, whereas the shown results for direct is obtained after 10000 epochs
(incrementally) with 0.1 learning rate, yielding an MSE a2 0.0004.

The experiment in [14] uses uniminig. We believe [14] used batch learning
because the reported MSE after 1500 epochs matches, namely =~ 0.05. However,
as can be seen in Fig. 2, this leads to poor performance (batched uniming). Incre-
mental learning yields a much more accurate FNN (& 0.0001 MSE), hence also
better performance (unimingg). The performance of the FNN in [14] under our
setup is indicated by the vanmali-markers in Fig. 2.

140 I. S. W. B. Prasetya and M. A. Tran

True Positives (TP) False Positives (FP)
60 .
wor T i -4 - batched unimin10 3
~& unimin10 K
o —e— uni30 *-'
. 5 —E- direct X
Vanmali
40
60 sp.2 [7 PN Ngelae—@m T
—————— 30
¥
40 K
Vanmali—¥
20
20 i --4 - batched unimin10 y
; —& unimin10 6
—e— uni30 10 b, s g QuEp———
i o - _ 8-
-5 direct Y20 e e -
. SV i diect Ft R e e
0 1 2 3 4 5 0T 1 2 3 4 5
aggresiveness level aggresiveness level

Fig. 2. The true positive and false positive rates (in %) of different FNNs.

The effect of using different abstractions and abstraction granularity (the
N parameter) is shown in Fig.3. Based on the results in Fig.2, we now use
the lowest aggressiveness level (0). The graph of uni shows that increasing N
can greatly improve the FNN’s ability to detect error, while keeping the false
positive rate below 5%. We also see ay and ay o low perform significantly better
than any o ctr, implying that the choice of the abstraction function matters.
Compared to ay, ay o low and ay o ctr introduce non-linear granularity. The
results suggest that introducing more granularity in the region (of P’s output)
which is more error prone pays off.

True Positives (TP) False Positives (FP)

60 14

-4 uni
12 —4&— center
—&— lower

10
40

20

=== uni
—4&— center
10 —e— lower 2

10 20 30 40 50 60
number of intervals (N) number of intervals (N)

Fig. 3. The effect of different abstractions and the abstraction granularity (V).

4

Neural Networks as Artificial Specifications 141

Conclusion

The experiment showed that, contrary to earlier attempts, it is possible to train
Neural Networks, given an appropriate abstraction, to become an artificial spec-
ification for a non-trivial discrete-domain program with acceptable precision. As
future work, more case studies are needed to see how this generalizes.

References

11.

12.

13.

14.

. Aggarwal, K., Singh, Y., Kaur, A., Sangwan, O.: A neural net based approach to

test oracle. ACM SIGSOFT Softw. Eng. Notes 29(3), 1-6 (2004)

Cao, T.D., Phan-Quang, T.T., Felix, P., Castanet, R.: Automated runtime veri-
fication for web services. In: International Conference on Web Services (ICWS).
IEEE (2010)

Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ACM SIGPLAN International Conference on Functional
Programming (2000)

Elyasov, A., Prasetya, W., Hage, J., Rueda, U., Vos, T., Condori-Fernandez, N.:
AB=BA: execution equivalence as a new type of testing oracle. In: 30th ACM
Symposium on Applied Computing. ACM (2015)

Ernst, M., et al.: The Daikon system for dynamic detection of likely invariants.
Sci. Comput. Program. 69(1), 35-45 (2007)

Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: SIGSOFT FSE, pp. 416-419 (2011)

Goodfellow, 1., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

Joelself: FANN C# NeuralNet float. http://joelself.github.io/FannCSharp
Kriesel, D.: A brief Introduction on Neural Networks. dkriesel.com (2007)

. Lu, Y., Ye, M.: Oracle model based on RBF neural networks for automated software

testing. Inf. Technol. J. 6(3), 469-474 (2007)

Mao, Y., Boqin, F., Li, Z., Yao, L.: Neural networks based automated test oracle for
software testing. In: King, 1., Wang, J., Chan, L.-W., Wang, D.L. (eds.) ICONIP
2006 Part III. LNCS, vol. 4234, pp. 498-507. Springer, Heidelberg (2006). https://
doi.org/10.1007/11893295_55

Mariani, L., Pastore, F.: Automated identification of failure causes in system
logs. In: 19th International Symposium on Software Reliability Engineering. IEEE
(2008)

Prasetya, .S.W.B.: T3i: a tool for generating and querying test suites for Java. In:
10th Joint Meeting on Foundations of Software Engineering (FSE). ACM (2015)
Vanmali, M., Last, M., Kandel, A.: Using a neural network in the software testing
process. Int. J. Intell. Syst. 17(1), 45-62 (2002)

http://joelself.github.io/FannCSharp
http://www.dkriesel.com/
https://doi.org/10.1007/11893295_55
https://doi.org/10.1007/11893295_55

	Neural Networks as Artificial Specifications
	1 Introduction
	2 Neural Network as an Artificial Specification
	3 Experiments
	4 Conclusion
	References

