Skip to main content

Congestion Control for IoT Using Channel Trust Based Approach

  • Conference paper
  • First Online:
Book cover Computer Information Systems and Industrial Management (CISIM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11127))

Abstract

Nowadays in the area of Internet of Things (IoT), congestion control has become an essential research area because of people and devices are progressively get connected over the network. The idea behind congestion control mechanisms originated from the point of network bandwidth, node processing ability, server capacities, channel capacity, flow of the link, number and size of distinct flow and channel reliability. Here we have used the concept of different RED, AMID and COAP based congestion control mechanisms. We have measure two level of congestion control that is node level and channel trustability. In this paper we have presented literature review of some of existing congestion control mechanisms. A congestion control model has also been proposed, which uses the measure of node level congestion and channel-trust for decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  2. Chen, J., He, S., Sun, Y., Thulasiraman, P.: Optimal flow control for utility-lifetime tradeoff in wireless sensor networks. Comput. Netw. 53, 3031–3041 (2009)

    Article  Google Scholar 

  3. Chen, J., Xu, W., He, S., Sun, Y., Thulasiraman, P., Shen, X.: Utility-based asynchronous flow control algorithm for wireless sensor networks. IEEE J. Sel. Areas Commun. 28, 1116–1126 (2010)

    Article  Google Scholar 

  4. Palattella, M.R., Accettura, N., Dohler, M., Grieco, L.A., Boggia, G.: Traffic aware scheduling algorithm for reliable low power multi hop IEEE 802.15.4e networks. In: 23rd IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, September 2012

    Google Scholar 

  5. Jain, R., Ramakrishnan, K.K., Chiu, D.-M.: Congestion avoidance in computer networks with a connectionless network layer. Digital Equipment Corporation, Technical report DEC-TR-506 (1987)

    Google Scholar 

  6. Bonald, T., May, M., Bolot, J.C.: Analytic evaluation of RED performance. Proc. INFOCOM 1(3), 1415–1424 (2000)

    Google Scholar 

  7. Bauso, D., Giarre, L., Neglia, G.: Active queue management stability in multiple bottleneck networks control. Commun. Sig. Process., 369–372 (2004)

    Google Scholar 

  8. Winter, T., et al.: IPv6 routing protocol for low-power and lossy networks. In: RFC 6550, IETF RFC 6550 (2012)

    Google Scholar 

  9. Accettura, N., Palattella, M.R., Boggia, G., Grieco, L.A., Dohler, M.: Decentralized traffic aware scheduling for multi-hop low power lossy networks in the internet of things. IEEE (2013)

    Google Scholar 

  10. Lam, R.K., Chen, K.-C.: Congestion control for M2M traffic with heterogeneous throughput demands. In: IEEE WCNC, pp. 1452–1457 (2013)

    Google Scholar 

  11. Miller, K., Harks, T.: Utility max-min fair congestion control with time-varying delays. In: Proceedings of IEEE INFOCOM, pp. 331 –335 (2008)

    Google Scholar 

  12. Chiu, D.-M., Jain, R.: Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw. ISDN Syst. 17(1), 1–14 (1989)

    Article  Google Scholar 

  13. Changbiao, X., Wei, S.: New TCP mechanism over heterogeneous networks. In: International Conference on Embedded Software and Systems, pp. 303–307 (2008)

    Google Scholar 

  14. Capone, A., Fratta, L.: Martignon, F.: Bandwidth estimation schemes for TCP over wireless networks. IEEE Trans. Mob. Comput. 3(2), 129–143 (2004)

    Article  Google Scholar 

  15. Budzisz, L., Stanojevic, R., Schlote, A., Baker, F., Shorten, R.: On the fair coexistence of loss- and delay-based TCP. IEEE/ACM Trans. Network. 19(6) (2011)

    Google Scholar 

  16. Leith, D., Heffner, J., Shorten, R., McCullagh, G.: Delay-based AIMD congestion control. In: Proceedings 5th PFLDnet, pp. 1–6 (2007)

    Google Scholar 

  17. Bhandarkar, S., Reddy, A., Zhang, Y., Loguinov, D.: Emulating AQM from end hosts. Comput. Commun. Rev. 37(4), 349–360 (2007)

    Article  Google Scholar 

  18. Que, D., Chen, Z., Chen, B.: An improvement algorithm based on RED and its performance analysis. In: ICSP Proceedings (2008)

    Google Scholar 

  19. Firoiu, V., Borden, M.: A study of active queue management for congestion control. In: IEEE INFOCOM (2000)

    Google Scholar 

  20. Huang, J., et al.: Modeling and analysis on congestion control in modeling and analysis on congestion control in IoT. In: IEEE ICC - Ad-hoc and Sensor Networking Symposium, pp. 434–439 (2014)

    Google Scholar 

  21. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Network. 1(4), 397–413 (1993)

    Article  Google Scholar 

  22. Zhang1, J.-C., Zhao, R.-X., Chen1, J.-J.: A hop to hop controlled hierarchical multicast congestion control mechanism. In: Hu, W. (ed.) Electronics and Signal Processing, LNEE 97, pp. 363–369. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21697-8_46

  23. Liu, J.-C., Li, B., Zhang, Y.-Q.: A hybrid adaptation protocol for tcp-friendly layered multicast and its optimal rate allocation. In: Proceedings of IEEE INFOCOM, pp. 1520–1528 (2001)

    Google Scholar 

  24. Byers, J.W., Horn, G., Luby, M.: FLID-DL, “congestion control for layered multicast”. IEEE J. Sel. Areas Commun. 20, 1558–1570 (2002)

    Article  Google Scholar 

  25. Liu, K.-J., Cheng, Z.-Q., Zhao, Y.-P.: Multicast congestion control based on hop to hop. Comput. Eng. 33, 99–101 (2007)

    Google Scholar 

  26. Hsieh, H.-C., Larosa, Y.T., Chen, J.-L.: Congestion control optimization of M2M in LTE network. Adv. Commun. Technol. (ICACT), 823–827 (2013)

    Google Scholar 

  27. Olivier, H., David, B., Omar, E.: The Internet of Things: Key Applications and Protocols, pp. 223–246. Wiley (2012)

    Google Scholar 

  28. Naous, J., Gibb, G., Bolouki, S., McKeown, N.: NetFPGA: reusable router architecture for experimental research. In: Proceedings of the ACM Workshop on Programmable Routers for Extensible Services of Tomorrow (PRESTO 2008), pp. 1–7 (2008)

    Google Scholar 

  29. Betzler, A., Gomez, C., Demirkol, I., Paradells, J.: CoAP congestion control for the internet of things. IEEE Commun., 154–160 (2016)

    Google Scholar 

  30. Bhalerao, R., Subramanian, S.S., Pasquale, J.: An analysis and improvement of congestion control in the CoAP internet-of-things protocol. In: Consumer Communications & Networking Conference (CCNC), pp. 889–894. IEEE (2016)

    Google Scholar 

  31. Poddar, M., Chaki, R., Pal, D.: A channel trust based approach for congestion control in IoT. In: AICT, pp. 319–324. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Poddar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poddar, M., Chaki, R., Pal, D. (2018). Congestion Control for IoT Using Channel Trust Based Approach. In: Saeed, K., Homenda, W. (eds) Computer Information Systems and Industrial Management. CISIM 2018. Lecture Notes in Computer Science(), vol 11127. Springer, Cham. https://doi.org/10.1007/978-3-319-99954-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99954-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99953-1

  • Online ISBN: 978-3-319-99954-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics