
ar
X

iv
:1

80
4.

07
55

0v
1

 [
cs

.D
B

]
 2

0
A

pr
 2

01
8

Specialty-Aware Task Assignment in Spatial

Crowdsourcing

Tianshu Song, Feng Zhu, Ke Xu

SKLSDE Lab, School of Computer Science and Engineering
Beihang University, Beijing 100191, China

Abstract. With the rapid development of Mobile Internet, spatial crowd-
sourcing is gaining more and more attention from both academia and in-
dustry. In spatial crowdsourcing, spatial tasks are sent to workers based
on their locations. A wide kind of tasks in spatial crowdsourcing are
specialty-aware, which are complex and need to be completed by workers
with different skills collaboratively. Existing studies on specialty-aware
spatial crowdsourcing assume that each worker has a united charge when
performing different tasks, no matter how many skills of her/him are used
to complete the task, which is not fair and practical. In this paper, we
study the problem of specialty-aware task assignment in spatial crowd-
sourcing, where each worker has fine-grained charge for each of their
skills, and the goal is to maximize the total number of completed tasks
based on tasks’ budget and requirements on particular skills. The prob-
lem is proven to be NP-hard. Thus, we propose two efficient heuristics
to solve the problem. Experiments on both synthetic and real datasets
demonstrate the effectiveness and efficiency of our solutions.

1 Introduction

With the development mobile Internet and the blossom of sharing economy, all
kinds of spatial crowdsourcing (SC) platforms become popular, where the online
crowd workers are employed by their phones to participate in and complete of-
fline crowdsourcing tasks in the physical world [9]. Typical SC platforms includes
Gigwalk1, TaskRabbit2 and gMission3 [2].

One fundamental issue in SC is task assignment, namely assigning crowd-
sourcing tasks to suitable crowd workers. Generally speaking, there are two
kinds of tasks. The first kind is micro tasks which can be completed by any
single worker such as taking photos and delivering things. The second kind is
specialty-aware tasks such as repairing a house and organizing a party, where
crowd workers with different kinds of skills are needed to work collaboratively
and finish the task. For micro-task assignment, there are many existing works
and we refer the readers to [14] for more details. In this paper we focus on
specialty-aware tasks assignment.

1 www.gigwalk.com
2 www.taskrabbit.com
3 gmission.github.io

http://arxiv.org/abs/1804.07550v1

Table 1: Tasks and their lists of skills
Tasks Lists of required skills

t1 s1(music), s2(drinks)

t2 s1(music), s3(barbecue), s4(lights)

t3
s1(music), s2(drinks), s3(barbecue),

s4(lights), s5(stage)

Table 2: Workers’ skills and fees
Workers Skills and fees

w1 (s1, 3), (s2, 4), (s4, 5)

w2 (s3, 5), (s5, 3)

w3 (s4, 2)

w4 (s1, 5), (s5, 1)

w5 (s1, 2), (s2, 2), (s3, 3), (s4, 6)

Existing works [3,4] on specialty-aware tasks assignment formulate that each
crowd worker has multiple skills and will get a united fee if s/he is employed,
which is not very practical as (1) workers often have unbalanced workloads, (2)
workers may be confused what they should do in a task and (3) the payment
and the workload do not often match. To solve the above drawbacks, in this
paper we propose the Specialty-Aware Task Assignment (SATA) problem where
each crowd worker specify a fee for each of her/his skill to make the payment
proportional to the workload.

We then illustrate the STAT problem by a motivation example of organizing
a party.

Fig. 1: Locations of tasks and workers.

Example 1. Suppose we have three tasks of throwing parties, each has different
styles and thus different kinds of works need to be done. For example, party 1 is
a mini one and only needs music and drinks, while party 3 is ceremonious and
requires music, drinks, barbecue, lights and a stage. The skill lists of the three
tasks are shown in Table 1. Besides, we have some workers shown in Table 2,
each with different skills and corresponding fees. For example, if w1 is required
to finish the music job (a1), s/he will be paid 3. Besides, each worker will get the
transportation fee, which equals the distance from the worker to the assignment
task times a global unit price. For example, Figure 1 shows the locations of
tasks and workers, and if the global unit price is 0.5, the transportation fees for
assigning w1 to t1 is

√
5× 0.5 ≈ 1.12.

Motivated by the example above, we will formalize the STAT problem, which
aims to efficiently assign crowd workers to specialty-aware tasks to maximize the
total utility of the assignment. Note that existing works either focus on assigning
workers to micro tasks to optimize different goals, or assume that the workers
have a united fee. Thus, their methods cannot be directed adopted to solve our
problem.

In this paper, we first prove the NP-hardness of the SATA problem, indicating
that SATA is not tractable and it is challenging to gain the optimal solution.
Therefore, we propose two efficient and effective heuristics to solve it.

To summarize, we make the following contributions.

– We formally define a new task assignment problem in spatial crowdsourcing,
called the Specialty-Aware Task Assignment (SATA) problem.

– We prove the SATA problem is NP-hard, and develop two efficient heuristics
to solve it.

– We verify the effectiveness and efficiency of the proposed methods with ex-
tensive experiments on real and synthetic datasets.

The rest of the paper is organized as follows. We define the SATA problem
and prove its NP-hardness in Section 2. Section 3 discusses extensive experiment
results on both synthetic and real datasets. We review related works in Section
4 and conclude in Section 5.

2 Problem Definition

We first introduce two basic concepts, namely Task and Worker. Then, we in-
troduce how to calculate the reward of worker. Finally, we formally give the
definition of the Specialty-Aware Task Assignment (SATA) problem.

Definition 1 (Worker). A worker w is defined as < Lw, Sw, Pw >, where
Lw is the location of w which can be described by longitude and latitude, Sw =<

sw1 , s
w
2 , · · · , sw|Sw| > is the list of skills that w masters, and Pw =< pw1 , p

w
2 , · · · , pw|Sw| >

is the list of fees for each skill in Sw.

Similar to the definition of a worker, a task is formally defined as follows.

Definition 2 (Task). A task t is defined as < Lt, St, Bt >, where Lt is the loca-
tion of t which can be described by longitude and latitude, St =< st1, s

t
2, · · · , st|St|

>

is the list of skills that are needed to complete t collaboratively, and Bt is the
total monetary budget of t.

Briefly, a worker’s reward includes two parts: (1) transportation fee, which is
directly proportional to the distance between the worker and the task; (2) labor
fee, which is the sum of the fees for the skills used to perform a task.

Definition 3 (Reward of Worker). The reward of task w to perform task
t equals rw = γ · dis(Lw, Lt) +

∑
s∈S′

w

pws , where dis(Lw, Lt) is the distance
between Lw and Lt, which can be Euclidean distance or road network distance,
γ is a global parameter representing the unit transportation fee, and S′

w is the
set of skills that w uses to perform the task.

We define the utility of a task as follows.

Definition 4 (Utility of Task). The utility of task t is defined as ut = Bt −∑
t∈Wt

rt, where Bt is the budget of the task and
∑

t∈Wt
rt is the summation of

rewards of workers assigned to t if t is completed. If t cannot be finished, the
utility is zero.

We finally define our problem as follows.

Definition 5 (Specialty-Aware Task Assignment (SATA) Problem).
Given a set of tasks T , a set of workers W and a global unit transportation
fee γ, the problem is to assign workers to tasks to maximize the total utility of
the completed tasks and the following constraints should be satisfied:

– Specialty Constraint: a task can be completed as long as the workers as-
signed to it can cover the required skills of the task;

– Budget Constraint: the total rewards of workers assigned to a task cannot
exceed the task’s total budget;

We then prove the hardness of SATA problem.

Theorem 1. The SATA problem is NP-hard.

Proof. We prove through a reduction from the set cover problem [20]
We first introduce the set cover problem. Given a universe U = {s1, s2, · · · , sn}

and its m subsets S1, S2, · · · , Sm ⊆ U , ∪m
i=1Si = U . Each Si is associated with

a cost ci. The set cover problem is to find a set K ⊆ {1, 2, · · · ,m} to minimize∑
i∈K ci satisfying ∪i∈KSi = U .
We next show how to transform the set cover problem to an instance of our

SATA problem. We only have one task t which requires skills St = U and has
infinite budget Bt. For m workers {w1, w2, · · · , wm}, their required fees for skills
are all zero, and we adjust their locations and γ to make their transportation
fee to perform t is ci. For this instance of our SATA problem, we aim to find a
set of workers K to maximize the utility of t, which equals to minimize

∑
i∈K ci.

In this way, we reduce set cover problem to our SATA problem. As the set cove
problem is known to be NP-hard [20], SATA problem is also NP-hard.

Algorithm 1: Total Budget Based Algorithm (TBA)

input : set of workers W , set of tasks T
output: Assignment M

1 Q← sorting tasks in T according to their budgets in descending order;
2 foreach t in Q do

3 Assign w ∈W to t with minimum rw

|S′

w
∩St|

;

4 Update M and W ;
5 St ← St − S′

w;
6 if St is ∅ then
7 Break;

8 return M

3 Algorithms

In this section, we give two efficient heuristic algorithms to solve the SATA
problem.

3.1 Total Budget Based Algorithm

Our first algorithm is called the Total Budget Based Algorithm (TBA). The main
idea is that we always try to assign workers to the tasks with the largest budget.
During the procedure of task assignment, we refer to the greedy algorithm to
solve the set cover problem [20].

The procedure of TBA is shown in algorithm-1. The algorithm takes the set
of workers W and set of tasks T as input, and return an assignment M between
them as shown in lines 1-2. In line 3, the algorithm first sorts the tasks in T in
descending order according to their budgets, and the sorted result is saved in Q.
In lines 4-13, for each task t in Q, we refer to the greedy algorithm to solve the
set cover problem [20] to assign workers. Specifically, in lines 5, we find worker
with minimum rw

|S′

w
∩St|

. Notes that here S′w considers all possible subsets of Sw.

In lines 6-7, we update M , W and St. In lines 9-11, if St is ∅, which means it can
be completed, we break the loop and start to assign workers for the next task.

Example 2. Back to our running example in Example 1. TBA first finds the task
with the largest total budget, which is t3. The it starts to assign workers for t3.
As w3 has the minimal rw

|S′

w
∩St|

of 2, we first assign w3 to t3. After assigning

w3, t3’s list of skills has not been covered, thus we assign w5 to t3 with rw
|S′

w
∩St|

of 7
3
. We finally assign w4 to t3 and the total reward paid to w3, w4 and w5

is 2 + 2 + 2 + 3 + 1 + (
√
2 + 4 +

√
10) × 0.5 ≈ 15. Thus, the utility of t3 is

30− 15 = 15. Similarly, we assign workers to t2 and t3 successively, and the final
utility of TBA is 21.08.

Complexity. If we take the maximum number of skills a worker may have
as a constant, the time complexity of TBA is O(max{|T |log|T |, |T ||W |}).

Algorithm 2: Average Budget Based Algorithm (ABA)

input : set of workers W , set of tasks T
output: Assignment M

1 Q← sorting tasks in T according to their budgets in descending order;
2 foreach t in Q do

3 Assign w ∈W to t with minimum rw

|S′

w
∩St|

;

4 Update M and W ;
5 St ← St − S′

w;
6 if St is ∅ then
7 Break;

8 return M

3.2 Average Budget Based Algorithm

The TBA algorithms only considers the total budget of tasks. However, a large
budget may result from a large number of skills required in the task. Thus, in
this subsection, we propose another algorithm, called Average Budget Based
Algorithm (ABA). The main idea is that we first measure the average budget of
all the tasks, and prefer to assign workers to tasks with a larger average budget.

The pseudo codes of ABA is shown in Algorithm-2. The biggest difference
between TBA and ABA lies on line 3. In TBA, we first sort tasks in T based on
average budget, which is defined as Bt

|St|
. The procedure of how to assign workers

to a given task is the same as TBA, which is shown in lines 4-13.

Example 3. Back to our running example in Example 1. Different from TBA,
ABA first finds the task with the largest average budget, which is t1. Then it
assigns workers to t1. As w5 has the minimal rw

|S′

w
∩St|

of 2, we first assign w5 to

t1. After assigning w5, we find t1’s list of skills has been covered, thus the total
utility is 20 − (2 + 2) − (

√
13 × 0.5 ≈ 14.20). Similarly, we next assign workers

for t2 and t3, and the final utility of TBA is 25.78.

Complexity. If we take the maximum number of skills a worker may have
as a constant, the time complexity of ABA is also O(max{|T |log|T |, |T ||W |}).

4 Evaluation

4.1 Experiment Setup

We use real and synthetic datasets to evaluate our algorithms. Real data comes
from CSTO (http://www.csto.com/), which is an outsource task platform. In the
CSTO dataset, each task is associated with a set of skills needed to complete the
software development task, and each coder is associated with a set of skills and
an average price which can be deduced from the history data. Since the CSTO
data is not associated with location information, we generate the distance of each

Table 3: Synthetic Dataset
Factor Setting

|T | 100 300 500 700 900

|W | 1000 3000 5000 7000 9000

γ 0.1 0.3 0.5 0.7 0.9

Bt 60 80 100 120 140

Pw 10 15 20 25 30

|S| 10 20 30 40 50

coder from the task following uniform distribution. For synthetic data, based on
the observation from real data set, the price of skills owned by a worker and
the budget of a task follow Gaussian distribution, respectively. Statistics of the
synthetic data are shown in Table3, where we mark our default settings in bold
font.

100 300 500 700 900

U
til

ity

×104

0

2

4

6

8

10

12

14

Baseline
TBA
ABA

(a) Cardinality of varying |T |

100 300 500 700 900

T
im

e

×104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Baseline
TBA
ABA

(b) Running Time of varying |T |

100 300 500 700 900

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Baseline
TBA
ABA

(c) Memory of varying |T |

Fig. 2: Results on varying |T |.

4.2 Experiment Results

In this subsection, we test the performance of our proposed algorithms by setting
different parameters. We evaluate two exact algorithm, called TBA and ABA,
and a baseline algorithm in terms of total utility score, running time and mem-
ory cost, and study the effect of varying parameters on the performance of the
algorithms. The baseline algorithm uses a simple random strategy, which assigns
workers to tasks randomly. The algorithms are implemented in CodeBlocks16.1,
and the experiments are performed on a machine with Intel(R) Core(TM) i5
2.50GHZ CPU and 8GB main memory.

Effects of the number of tasks |T |. The results of varying |T | are pre-
sented in Fig.2a to 2c. First, we can observe that the utility increases as |T |
increases, which is reasonable as more tasks available. Also, we can observe that
TBA algorithm and ABA algorithm are much better than baseline algorithm

1000 3000 5000 7000 9000

U
til

ity

×104

0

2

4

6

8

10

12

Baseline
TBA
ABA

(a) Cardinality of varying |W |

1000 3000 5000 7000 9000

T
im

e

×104

0

0.5

1

1.5

2

2.5

3

Baseline
TBA
ABA

(b) Running Time of varying

|W |

1000 3000 5000 7000 9000

M
em

or
y

3.5

4

4.5

5

5.5

6

6.5

Baseline
TBA
ABA

(c) Memory of varying |W |

Fig. 3: Results on varying |W |.

0.1 0.3 0.5 0.7 0.9

U
til

ity

×104

0

2

4

6

8

10

12

Baseline
TBA
ABA

(a) Cardinality of varying γ

0.1 0.3 0.5 0.7 0.9

T
im

e

2000

4000

6000

8000

10000

12000

14000

Baseline
TBA
ABA

(b) Running Time of varying γ

0.1 0.3 0.5 0.7 0.9

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Baseline
TBA
ABA

(c) Memory of varying γ

Fig. 4: Results on varying γ.

and TBA algorithm has advantages over ABA algorithm. As for running time,
TBA and ABA are slower than the baseline due to sorting tasks and finding more
economic schedule, and the running time is acceptable for better performance on
utility. Moreover, TBA is faster than ABA for it is easier to find suitable workers
for each tasks. The three algorithm do not vary much in memory consumption.

Effects of the number of workers |W |. The results of varying |W | are
presented in Fig.3a to 3c. We can observe that the utility, running time and
memory consumption generally increase as |W | increase, which is reasonable as
more workers need to be assigned. Again, we can see that TBA are better than
ABA in terms of Utility and running time.

Effects of the global unit transportation fee γ. The results of varying
γ are presented in Fig.4a to 4c. We can see that the utility and running time
decrease as the γ increases for higher transportation fee and less workers that
could be assigned to far tasks.

Effects of the average budget of tasks Bt. The results are presented in
Fig.5a to 5c. We can first see from the figure that the utility increases as the
average budget increases. And there is no large differences of the running time
and memory consumption between various Bt.

Effects of the variance of the price of different skills Pw. The results
are presented in Fig.6a to 6c. We can see from the figures that TBA algorithm

60 80 100 120 140

U
til

ity

×105

0

0.5

1

1.5

2

2.5

Baseline
TBA
ABA

(a) Cardinality of varying Bt

60 80 100 120 140

T
im

e

0

2000

4000

6000

8000

10000

12000

14000

Baseline
TBA
ABA

(b) Runnint Time of varying Bt

60 80 100 120 140

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Baseline
TBA
ABA

(c) Memory of varying Bt

Fig. 5: Results on varying Bt.

10 15 20 25 30

U
til

ity

×104

0

2

4

6

8

10

12

Baseline
TBA
ABA

(a) Cardinality of varying Pw

10 15 20 25 30

T
im

e

2000

4000

6000

8000

10000

12000

14000

Baseline
TBA
ABA

(b) Running Time of varying Pw

10 15 20 25 30

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Baseline
TBA
ABA

(c) Memory of varying Pw

Fig. 6: Results on varying Pw.

and ABA algorithm have much better performance than baseline algorithm as
the price increases. And the running time and memory consumption do not vary
too much in different price.

Effects of the total number of skills |S|. The results are presented in
Fig.7a to 7c. First, we can observe that the utility and memory consumption do
not change greatly as the number increases. Then, we can see that the running
time increases as the number increases, and this is reasonable because it is much
harder to find suitable workers to finish the task for more kinds of skills.

Real Dataset. The results on real dataset are shown in Fig.8a to 9c, where
we vary |T | and price. We can observe similar patterns as those in Fig.2a to 2c
and Fig.4a to 4c.

Conclusion. For Utility, TBA is better than ABA and baseline algorithm,
and both TBA and ABA algorithm have a much better performance than base-
line algorithm. As for running time, baseline algorithm is fastest, but the speed
of TBA and ABA algorithm is acceptable for most circumstances. Moreover,
TBA algorithm is faster than ABA algorithm.

10 20 30 40 50

U
til

ity

×104

0

2

4

6

8

10

12

14

16

18

Baseline
TBA
ABA

(a) Cardinality of varying |S|

10 20 30 40 50

T
im

e

2000

4000

6000

8000

10000

12000

14000

Baseline
TBA
ABA

(b) Runnint Time of varying |S|

10 20 30 40 50

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Baseline
TBA
ABA

(c) Memory of varying |S|

Fig. 7: Results on varying |S|.

100 300 500 700 900

U
til

ity

×105

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Baseline
TBA
ABA

(a) Cardinality of varying |T |

100 300 500 700 900

T
im

e

×104

0

0.5

1

1.5

2

2.5

Baseline
TBA
ABA

(b) Running Time of varying |T |

100 300 500 700 900

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Baseline
TBA
ABA

(c) Memory of varying |T |

Fig. 8: Results of Real Dataset on varying |T |.

5 Related Work

In this section, we review related works from two categories, namely task assign-
ment and team formation problem.

5.1 Task Assignment in Spatial Crowdsourcing

The research on task assignment in spatial crowdsourcing mainly includes two
parts: micro-task assignment and specialty-aware task assignment.

Micro task refers to the spatial tasks that can be completed by any single
worker. [6] is the first work on task assignment in spatial crowdsourcing, whose
optimization objective is to maximize the total number of the assignment tasks.
[16] is the first work focusing on the online scenario of task assignment, and stud-
ies the two-sided online task assignment problem, whose goal is to maximize the
total utility score of the assignment. [10] also focuses on the online scenario and
considers the influence of work space on task assignment, whose goal is to maxi-
mize the total utility score. [15] studies the problem of online minimum weighted
bipartite matching, which can be used in online task assignment. [18] considers
the problem of flexible online matching where workers can be scheduled if no
task is assigned. [11] recommends routes dynamically for workers to deal with
online tasks, and the goal is to maximize the total utility. [21] assigns tasks to

0.1 0.3 0.5 0.7 0.9

U
til

ity

×105

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Baseline
TBA
ABA

(a) Cardinality of varying γ

0.1 0.3 0.5 0.7 0.9

T
im

e

2000

4000

6000

8000

10000

12000

14000

16000

Baseline
TBA
ABA

(b) Running Time of varying γ

0.1 0.3 0.5 0.7 0.9

M
em

or
y

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

Baseline
TBA
ABA

(c) Memory of varying γ

Fig. 9: Results of Real Dataset on varying γ.

workers while trading off quality and latency of task completion. [17] proposes
a match-based approach to solve the dynamic pricing problem in spatial crowd-
sourcing. [22] takes the destinations of workers into consideration to perform
task assignment. [13] considers performing online task assignment while preserv-
ing the privacy of tasks and workers under the circumstance that the server is
untrusted. [12,19] proposes a real-time framework for task assignment. The dif-
ference between our work and the aforementioned works is that they focus on
micro tasks which can be completed by a single worker, and we study on the as-
signment for specialty-aware tasks which have requirements on skills of workers
and usually have to be completed by multiple workers collaboratively.

[4,5] recommend top-k teams with the minimum cost to a specialty-aware
task. [3] studies assigning workers for specialty-aware tasks to maximize the
total utility score. The difference between our work and [3] is that in our work
workers specify fees for each of their skills, and in [3] workers only have a united
fee, which is not practical.

5.2 Team Formation Problem

A closely related topic is the team formation problem [7], whose goal is to find
a team of experts with the minimum cost, according to the skills and social
relationships of the users. [1] studies the online version of the team formation
problem, where the issue of workload balance is also considered. [8] studies an-
other variant of the team formation problem where the capacity constraint of
experts is considered. The difference between our problem and the team forma-
tion problem and its variants is that we do not consider the social relationships
between users and focus on task assignment.

6 Conclusion

In this paper we study the problem of Specialty-Aware Task Assignment (SATA)
in spatial crowdsourcing, where the tasks have requirements on skills, and the
workers specify fees for each of their skills. The goal is to maximize the total

utility of the task assignment between tasks and workers. We prove the SATA
problem is NP-hard. To solve the problem, we propose two efficient and effective
heuristic algorithms. We conduct extensive experiments on both synthetic and
real-world datasets to evaluate our algorithms. The experiment results show that
our solutions are efficient and effective.

References

1. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: WWW 2012. pp. 839–848

2. Chen, Z., Fu, R., Zhao, Z., Liu, Z., Xia, L., Chen, L., Cheng, P., Cao, C.C., Tong,
Y., Zhang, C.J.: gmission: A general spatial crowdsourcing platform. PVLDB 7(14),
1629–1632 (2014)

3. Cheng, P., Lian, X., Chen, L., Han, J., Zhao, J.: Task assignment on multi-skill
oriented spatial crowdsourcing. TKDE 28(8), 2201–2215 (2016)

4. Gao, D., Tong, Y., She, J., Song, T., Chen, L., Xu, K.: Top-k team recommendation
in spatial crowdsourcing. In: WAIM 2016. pp. 191–204

5. Gao, D., Tong, Y., She, J., Song, T., Chen, L., Xu, K.: Top-k team recommendation
and its variants in spatial crowdsourcing. DSE 2(2), 136–150 (2017)

6. Kazemi, L., Shahabi, C.: Geocrowd: enabling query answering with spatial crowd-
sourcing. In: GIS 2012. pp. 189–198

7. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
SIGKDD 2009. pp. 467–476

8. Majumder, A., Datta, S., Naidu, K.: Capacitated team formation problem on social
networks. In: SIGKDD 2012. pp. 1005–1013

9. Musthag, M., Ganesan, D.: Labor dynamics in a mobile micro-task market. In:
CHI 2013

10. Song, T., Tong, Y., Wang, L., She, J., Yao, B., Chen, L., Xu, K.: Trichromatic
online matching in real-time spatial crowdsourcing. In: ICDE 2017. pp. 1009–1020

11. Tao, Q., Zeng, Y., Zhou, Z., Tong, Y., Chen, L., Xu, K.: Multi-worker-aware task
planning in real-time spatial crowdsourcing. In: DASFAA 2018

12. To, H., Fan, L., Tran, L., Shahabi, C.: Real-time task assignment in hyperlocal
spatial crowdsourcing under budget constraints. In: PerCom 2016. pp. 1–8

13. To, H., Shahabi, C., Xiong, L.: Privacy-preserving online task assignment in spatial
crowdsourcing with untrusted server. In: ICDE 2018

14. Tong, Y., Chen, L., Shahabi, C.: Spatial crowdsourcing: Challenges, techniques,
and applications. PVLDB 10(12), 1988–1991 (2017)

15. Tong, Y., She, J., Ding, B., Chen, L., Wo, T., Xu, K.: Online minimum matching
in real-time spatial data: Experiments and analysis. vol. 9, pp. 1053–1064 (2016)

16. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation
in spatial crowdsourcing. In: ICDE 2016. pp. 49–60

17. Tong, Y., Wang, L., Zhou, Z., Chen, L., Du, B., Ye, J.: Dynamic pricing in spatial
crowdsourcing: A matching-based approach. In: SIGMOD 2018

18. Tong, Y., Wang, L., Zhou, Z., Ding, B., Chen, L., Ye, J., Xu, K.: Flexible online
task assignment in real-time spatial data. PVLDB 10(11), 1334–1345 (2017)

19. Tran, L., To, H., Fan, L., Shahabi, C.: A real-time framework for task assignment
in hyperlocal spatial crowdsourcing. TIST 9(3), 37 (2018)

20. Vazirani, V.V.: Approximation Algorithms. Springer Science & Business Media
(2013)

21. Zeng, Y., Tong, Y., Chen, L., Zhou, Z.: Latency-oriented task completion via spatial
crowdsourcing. In: ICDE 2018

22. andYang Li andYu Wang andHan Su andKai Zheng, Y.Z.: Destination-aware task
assignment in spatial crowdsourcing. In: CIKM 2017. pp. 297–306

	Specialty-Aware Task Assignment in Spatial Crowdsourcing

