Skip to main content

How Much Can Experimental Cost Be Reduced in Active Learning of Agent Strategies?

  • Conference paper
  • First Online:
  • 688 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11105))

Abstract

In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at learning an agent strategy, performing experiments involves costs. To that extent, the efficiency of a learning process relies on the number of experiments performed. We study in this article how the cost of experimentation can be reduced with active learning to learn efficient agent strategies. We consider an extension of the meta-interpretive learning framework that allocates a Bayesian posterior distribution over the hypothesis space. At each iteration, the learner queries the label of the instance with maximum entropy. This produces the maximal discriminative over the remaining competing hypotheses, and thus achieves the highest shrinkage of the version space. We study the theoretical framework and evaluate the gain on the cost of experimentation for the task of learning regular grammars and agent strategies: our results demonstrate the number of experiments to perform to reach an arbitrary accuracy level can at least be halved.

The original version of this chapter was revised: The authors affiliation was corrected. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-99960-9_11

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Change history

  • 18 November 2018

    Due to an internal error during the production process, the wrong affiliation of an author was entered in the originally published article. This was corrected.

Notes

  1. 1.

    Code for these experiments available at https://github.com/celinehocquette/Bayesian-MIL-active-learning.git.

References

  1. Angluin, D.: Queries and concept learning. J. Autom. Reason. 2(4), 319–42 (1988)

    MathSciNet  Google Scholar 

  2. Angluin, D.: Queries revisited. Theor. Comput. Sci. 313(2), 175–194 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bryant, C.H., Muggleton, S.H., Oliver, S.G., Kell, D.B., Reiser, P., King, R.D.: Combining inductive logic programming, active learning and robotics to discover the function of genes. Electron. Trans. Artif. Intell. 5–B1(012), pp. 1–36 (2001)

    Google Scholar 

  4. Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201–221 (1994)

    Google Scholar 

  5. Cover, M.T., Thomas, J.A.: Elements of Information Theory. Wiley (2006)

    Google Scholar 

  6. Cropper, A., Muggleton, S.H.: Learning efficient logical robot strategies involving composable objects. In: IJCAI 2015, pp. 3423–3429 (2015)

    Google Scholar 

  7. Cropper, A., Muggleton, S.H.: Logical minimisation of meta-rules within meta-interpretive learning. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS (LNAI), vol. 9046, pp. 62–75. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23708-4_5

    Chapter  Google Scholar 

  8. Cropper, A., Muggleton, S.H.: Learning efficient logic programs. Mach. Learn. (2018)

    Google Scholar 

  9. Cropper, A., Muggleton, S.H.: Learning higher-order logic programs through abstraction and invention. In: IJCAI 2016, pp. 1418–1424 (2016)

    Google Scholar 

  10. Dasgupta, S.: Analysis of a greedy active learning strategy. Adv. Neural Inf. Process. Syst. 17, 337–344 (2005)

    Google Scholar 

  11. Dasgupta, S.: Coarse sample complexity bounds for active learning. In: Proceedings of the 18th International Conference on Neural Information Processing Systems, pp. 235–242 (2005)

    Google Scholar 

  12. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective samping using the query by committee algorithm. Mach. Learn., pp. 1551–1557 (1997)

    Google Scholar 

  13. Hanneke, S.: A bound on the label complexity of agnostic active learning. In: ICML (2007)

    Google Scholar 

  14. Hanneke, S.: Theory of disagreement-based active learning. Found. Trends Mach. Learn. 7 (2014)

    Google Scholar 

  15. Haussler, D., Kearns, M., Schapire, R.E.: Bounds on the sample complexity of bayesian learning using information theory and the VC dimension. Mach. Learn. 14, 83–113 (1994)

    MATH  Google Scholar 

  16. von Frisch, K.: The dance language and orientation of bees. The Belknap Press of Harvard University Press, Cambridge, Massachussets (1967)

    Google Scholar 

  17. King, R.D., et al.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  18. Kulkarni, S.R., Mitter, S.K., Tsitsiklis, J.N.: Active learning using arbitrary binary valued queries. Mach. Learn. 11, 23–35 (1993)

    Article  Google Scholar 

  19. Lang, T., Toussaint, M., Kersting, K.: Exploration in relational worlds. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp. 178–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15883-4_12

    Chapter  Google Scholar 

  20. Lewis, D., Gale, W.: A sequential algorithm for training text classifiers. In: Croft, B.W., van Rijsbergen, C.J. (eds.) SIGIR 1994, pp. 3–12. ACM/Springer, London (1994). https://doi.org/10.1007/978-1-4471-2099-5_1

  21. Mitchell, T.M.: Version Spaces: An Approach to Concept Learning. PhD Thesis (1978)

    Google Scholar 

  22. Muggleton, S.H., Lin, D.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. In: Proceedings of the 23rd International Joint Conference Artificial Intelligence, pp. 1551–1557 (2013)

    Google Scholar 

  23. Muggleton, S.H., Lin, D., Chen, J., Tamaddoni-Nezhad, A.: MetaBayes: bayesian meta-interpretative learning using higher-order stochastic refinement. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds.) ILP 2013. LNCS (LNAI), vol. 8812, pp. 1–17. Springer, Heidelberg (2014)

    Google Scholar 

  24. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive learning: application to grammatical inference. Mach. Learn. 94, 25–49 (2014)

    Article  MathSciNet  Google Scholar 

  25. Rodrigues, C., Gérard, P., Rouveirol, C., Soldano, H.: Active learning of relational action models. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS (LNAI), vol. 7207, pp. 302–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31951-8_26

    Chapter  Google Scholar 

  26. Roy, S., Namboodiri, V.P., Biswas, A.: Active learning with version spaces for object detection. ArXiv e-prints, November 2016

    Google Scholar 

  27. Settles, B.: Active learning literature survey. 52, July 2010

    Google Scholar 

  28. Thompson, C.A., Califf, M.E., Mooney, R.J.: Active learning for natural language parsing and information extraction. In: Proceedings of the 16th International Conference on Machine Learning, ICML 1999, pp. 406–414. Morgan Kaufmann Publishers Inc. (1999)

    Google Scholar 

  29. Tosh, C., Dasgupta, S.: Diameter-based active learning. CoRR, abs/1702.08553 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Hocquette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hocquette, C., Muggleton, S. (2018). How Much Can Experimental Cost Be Reduced in Active Learning of Agent Strategies?. In: Riguzzi, F., Bellodi, E., Zese, R. (eds) Inductive Logic Programming. ILP 2018. Lecture Notes in Computer Science(), vol 11105. Springer, Cham. https://doi.org/10.1007/978-3-319-99960-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99960-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99959-3

  • Online ISBN: 978-3-319-99960-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics