Skip to main content

How to Describe Basic Urban Pattern in Geographic Information Systems

  • Conference paper
  • First Online:
Book cover Information and Software Technologies (ICIST 2018)

Abstract

Spatial patterns play an important role in the Spatial Data Analysis performed by Geographic Information Systems. This paper presents the analysis of the urban pattern description in the form of UML class diagrams covering the aspects of the hierarchy and generalization of patterns and metapatterns. In addition, the data model for keeping the 3D geometric and topographic data of the urban pattern is reviewed. Subsequently, the article presents a survey of the methods and solutions of spatial analysis, concentrating on the methods based on space syntax, which could be used in further research and computerization of the methodology of urban patterns for Geographic Information Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, C.: The Timeless Way of Building. Oxford University Press, New York (1979)

    Google Scholar 

  2. Alexander, C.: A Pattern Language. Oxford University Press, New York (1977)

    Google Scholar 

  3. Jiang, B., Claramunt, C., Klarqvist, B.: An integration of space syntax into GIS for modelling urban spaces. Int. J. Appl. Earth Obs. Geoinf. 2, 161–171 (2000). https://doi.org/10.1016/S0303-2434(00)85010-2

    Article  Google Scholar 

  4. Matijošaitienė, I., Zaleckis, K., Stankevičė, I.: Sustainable city – a city without crime. Archit. Urban Plan. 7, 59–64 (2013). https://doi.org/10.7250/aup.2013.007

    Article  Google Scholar 

  5. Ahmed, B., Hasan, R., Maniruzzaman, K.M.: Urban morphological change analysis of Dhaka City, Bangladesh, using space syntax. ISPRS Int. J. Geo-Inf. 3, 1412–1444 (2014). https://doi.org/10.3390/ijgi3041412

    Article  Google Scholar 

  6. WP4 Deliverable Report: Urban Pattern Specification. http://www.suburbansolutions.ac.uk/documents/WP4DeliverableReportNov2009.pdf. Accessed 04 July 2018

  7. Huisman, O., By, R.A.: Principles of Geographic Information Systems. The International Institute for Geo-Information Science and Earth Observation, Enschede (2009)

    Google Scholar 

  8. Billen, R., Zlatanova, S.: 3D spatial relationships model: a useful concept for 3D cadastre? Comput. Environ. Urban Syst. 27, 411–425 (2003). https://doi.org/10.1016/S0198-9715(02)00040-6

    Article  Google Scholar 

  9. Volk, T.: Metapatterns. Columbia University Press, New York (1995)

    Google Scholar 

  10. Borgatti, S.P., EÍerett, M.G.: Models of core/periphery structures. Soc. Netw. 21, 375–395 (1999). https://doi.org/10.1016/S0378-8733(99)00019-2

    Article  Google Scholar 

  11. Major, M.D.: The Syntax of City Space: American Urban Grids. Routledge, London (2018)

    Book  Google Scholar 

  12. Dimililer, R., Akyuz, U.: Towards a multi-disciplinary approach in urban design education: art and software (Depthmap) use in urban design of public spaces. EURASIA J. Math. Sci. Technol. Educ. 14, 1325–1335 (2018). https://doi.org/10.29333/ejmste/81521

    Article  Google Scholar 

  13. Qiming, Z., Zhang, W.Z.: A preliminary review on three-dimensional city model. Geo-spat. Inf. Sci. 7, 79–88 (2012). https://doi.org/10.1007/BF02826641

    Article  Google Scholar 

  14. Campagna, M.: GIS for Sustainable Development. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  15. Kyu, S., Ban, J.Y.: Computational algorithms to evaluate design solutions using Space Syntax. Comput. Aided Des. 43, 664–676 (2011). https://doi.org/10.1016/j.cad.2011.02.011

    Article  Google Scholar 

  16. Zlatanova, S., Rahman, A.A., Shi, W.: Topological models and frameworks for 3D spatial objects. Comput. Geosci. 30, 419–428 (2004). https://doi.org/10.1016/j.cageo.2003.06.004

    Article  Google Scholar 

  17. Ariza-Villaverde, A.B., Jiménez-Hornero, F.J., Gutiérrez De Ravé, E.: Multifractal analysis of axial maps applied to the study of urban morphology. Comput. Environ. Urban Syst. 38, 1–10 (2013). https://doi.org/10.1016/j.compenvurbsys.2012.11.001

    Article  Google Scholar 

  18. Depthmap 4 - A Researcher’s Handbook. http://www.vr.ucl.ac.uk/depthmap/depthmap4.pdf. Accessed 21 Apr 2018

  19. The Space Syntax Toolkit: integrating depthmapX and exploratory spatial analysis workflows in QGIS. https://www.researchgate.net/publication/281856918_The_Space_Syntax_Toolkit_integrating_depthmapX_and_exploratory_spatial_analysis_workflows_in_QGIS. Accessed 04 July 2018

  20. Sevtsuk, A., Mekonnen S.M.: Urban network analysis: a new toolbox for ArcGIS. Revue internationale de géomatique 22, 287–305 (2012). https://doi.org/10.3166/rig.22.287-305

    Article  Google Scholar 

  21. Dale, M.R.T., Dixon, P., Fortin, M., Legendre, P., Myers, D.E., Rosenberg, M.S.: Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25, 558–577 (2002). https://doi.org/10.1034/j.1600-0587.2002.250506.x

    Article  Google Scholar 

  22. Widaningrum, D.L., Surjandari, I., Arymurthy, A.M.: Spatial data utilization for location pattern analysis. Procedia Comput. Sci. 124, 69–76 (2017). https://doi.org/10.1016/j.procs.2017.12.131

    Article  Google Scholar 

  23. Wahyudi, A., Liu, Y.: Spatial dynamic models for inclusive cities: a brief concept of Cellular Automata (CA) and Agent-Based Model (ABM). Jurnal Perencanaan Wilayah dan Kota 26, 54–70 (2015). https://doi.org/10.5614/jpwk.2015.26.1.6

    Article  Google Scholar 

  24. Uitermark, H.T., van Oosterom, P.J.M., Mars, N.J.I., Molenaar, M.: Ontology-based geographic data set integration. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 60–78. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48344-6_4

    Chapter  Google Scholar 

  25. Fonseca, F., Egenhofer, M., Agouris, P., Câmara, G.: Using ontologies for integrated geographic information systems. Trans. GIS 6, 231–257 (2002). https://doi.org/10.1111/1467-9671.00109

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indraja E. Germanaitė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Germanaitė, I.E., Butleris, R., Zaleckis, K. (2018). How to Describe Basic Urban Pattern in Geographic Information Systems. In: Damaševičius, R., Vasiljevienė, G. (eds) Information and Software Technologies. ICIST 2018. Communications in Computer and Information Science, vol 920. Springer, Cham. https://doi.org/10.1007/978-3-319-99972-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99972-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99971-5

  • Online ISBN: 978-3-319-99972-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics