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Abstract. Training classifiers using imbalanced data is a challenging
problem in many real-world recognition applications due in part to the
bias in performance that occur for: (1) classifiers that are often opti-
mized and compared using unsuitable performance measurements for
imbalance problems; (2) classifiers that are trained and tested on a fixed
imbalance level of data, which may differ from operational scenarios; (3)
cases where the preference of correct classification of classes is appli-
cation dependent. Specialized performance evaluation metrics and tools
are needed for problems that involve class imbalance, including scalar
metrics that assume a given operating condition (skew level and rela-
tive preference of classes), and global evaluation curves or metrics that
consider a range of operating conditions. We propose a global evalua-
tion space for the scalar F-measure metric that is analogous to the cost
curves for expected cost. In this space, a classifier is represented as a
curve that shows its performance over all of its decision thresholds and
a range of imbalance levels for the desired preference of true positive
rate to precision. Experiments with synthetic data show the benefits of
evaluating and comparing classifiers under different operating conditions
in the proposed F-measure space over ROC, precision-recall, and cost
spaces.
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1 Introduction

Evaluating performance is a critical step in classifier design and comparison.
Classification accuracy is the most widely used performance metric, also used as
the objective function of many state-of-the-art learning algorithms (e.g., support
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vector machines). However, when data from different classes are imbalanced, it
favours the correct classification of the majority classes at the expense of high
misclassification rates for the minority ones. This is an issue in many detection
problems where samples of the class of interest (“positive” or “target” class)
are heavily outnumbered by those of other (“negative” or “non-target”) classes.
The widely used ROC curve (which plots the true positive rate vs the false
positive rate for two-class classification problems), is not suitable for imbalanced
data either, since it is independent of the level of imbalance. The alternative
Precision-Recall (PR) curve is more suitable than ROC space, since precision
is sensitive to imbalance; however, the performance of a given classifier under
different imbalance levels corresponds to different PR curves, which makes it
difficult to evaluate and compare classifiers.

Alternatively, scalar performance metrics like the expected cost (EC) and the
F-measure (widely used in information retrieval) are typically employed when
data is imbalanced. Since they seek different trade-offs between positive and neg-
ative samples, the choice between them is application-dependent. EC allows to
indirectly address class imbalance by assigning different misclassification costs
to positive and negative samples. Two graphical techniques have recently been
proposed to easily visualize and compare classifier performance in terms of EC
under all possible operating conditions: cost curves (CC) [3] and Brier curves
(BC) [5]. The F-measure, recently analyzed by many researchers [2,12–14] is
defined as the weighted harmonic mean of precision and recall, and thus evalu-
ates classifier performance using a weight that controls the relative importance
of recall (i.e., the true positive rate) and precision, which is sensitive to class
imbalance. However, no performance visualization tool analogous to CC or BC
exists for the F-measure. One may use the PR space to this aim, but the iso-
metrics of the F-measure in PR space are hyperbolic [7,9], which does not allow
to easily evaluate classifiers under diverse operating conditions.

This paper introduces F-measure curves, a global visualization tool for the
F-measure analogous to CC. It consists in plotting the F-measure of a given clas-
sifier versus two parameters – the level of imbalance and the preference between
recall and precision – and allows to visualize and compare classifier performance
in class imbalance problems for different decision thresholds, under different
operating conditions. In this space, a crisp classifier corresponds to a curve that
shows its F-measure over all possible imbalance levels, for a desired level of pref-
erence between recall and precision. A soft classifier corresponds to the upper
envelope of such curves for all possible decision thresholds. This space allows
to compare classifiers more easily than in the PR space for a given operating
condition, analogously to CC or BC vs the ROC space. For a given preference
level between precision and recall, one classifier may outperform another over all
skew levels, or only for a specific range, which can be determined both analyti-
cally and empirically in the proposed space, as with the CC space. To clarify the
benefits of the proposed space, experiments are performed on synthetic data.
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2 Performance Metrics and Visualization Tools

In many real-world applications, the distribution of data is imbalanced [10];
correctly recognizing positive samples is the main requirement, while avoiding
excessive misclassification of negative samples can also be important. If applica-
tion requirements are given by misclassification costs, misclassification of positive
samples usually exhibits a higher cost, which “indirectly” addresses class imbal-
ance. Otherwise, assigning different “fictitious” costs to misclassifications of pos-
itive and negative samples can be an indirect means to achieve the same goal.
Several performance metrics have been proposed so far for applications involving
imbalanced classes [1,6,8,11,15]. This section provides a review of these metrics
in terms of their sensitivity to imbalance, focusing on global spaces that consider
different operating conditions and preference weights.

Scalar Performance Metrics. We focus on two-class problems, although some
metrics can also be applied in multi-class cases. Let P (+) and P (−) be the prior
probability of the positive and negative class, and λ = P (−)/P (+) the class skew.
From a given data set with n+ positive and n− negative samples, P (+) can be
estimated as n+/(n++n−), and similarly for P (−), whereas λ can be estimated
as n−/n+ . As in [3], we focus on evaluating classifier performance as a function
of the prior of the positive class when the classifier is deployed, which can be
different than in the training and testing sets; accordingly, from now on we will
use P (+) (and P (−)) to denote the class prior during classifier deployment (use).
Since this value is unknown during classifier design, we will evaluate classifier
performance across all possible P (+) values.

Classifier performance on a given data set can be summarized by its con-
fusion matrix, in terms of the true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) counts. Let N+ and N− the number
of samples classified as positive and negative, respectively. The corresponding
rates are defined as TPR = TP/n+, FNR = FN/n+, TNR = TN/n− and
FPR = FP/n−.

Several scalar metrics can be defined from the above rates. The widely used
error rate, defined as (FP + FN)/(n+ + n−), is biased towards the correct clas-
sification of the negative (majority) class, which is not suitable to imbalanced
data. When costs can be associated to classification outcomes (either correct or
incorrect), the expected cost (EC) is used; denoting as CFN and CFP the mis-
classification costs of positive and negative samples (usually the cost of correct
classifications is zero), EC is defined as:

EC = FNR · P (+) · CFN + FPR · P (−) · CFP (1)

When data is imbalanced, usually CFN > CFP, which can also avoid the bias
of the error probability toward the negative class. Accordingly, by setting suit-
able fictitious costs, EC can also be used to deal with class imbalance even if
misclassification costs are not precisely known or difficult to define. However, as
CFN/CFP increases, minimizing EC increases TPR at the expense of increasing
FPR, which may be undesirable.
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In information retrieval applications the complementary metrics Precision
(Pr) and Recall (Re) are often used, instead: Re corresponds to TPR, whereas
Pr is defined as TP/(TP + FP ) or TP/N+. Pr depends on both TP and FP,
and drops severely when correct classification of positive class is attained at the
expense of a high fraction of misclassified negative samples, as can be seen by
rewriting Pr as:

Pr =
TP
n+

TP
n+

+ FP
n+

× n−
n−

=
TPR

TPR + λFPR
. (2)

This is useful to reveal the effect of class imbalance, compared to EC.
Pr and Re can be combined into the F-measure scalar metric [16], defined as

their weighted harmonic mean:

Fα =
1

α 1
Pr + (1 − α) 1

Re

, (3)

where 0 < α < 1. By rewriting α as (1+ β2)−1, β ∈ [0,+∞), Fα can be rewritten
as:

Fβ =
(1 + β2)Pr · Re

β2Pr + Re
=

(1 + β2)TP
(1 + β2)TP + FP + β2FN

. (4)

When α → 0, Fα → Re, and when α → 1, Fα → Pr. Note that the sensitivity of
the F-measure to the positive and negative classes can be adjusted by tuning α.
This measure can be preferable to EC for imbalanced data, since it weighs the
relative importance of TPR (i.e., Re) and Pr, rather than TPR and FPR.

Other metrics have been used, or specifically proposed, for class imbalance
problems, although they are currently less used than EC and the F-measure [6,8].

Global Evaluation Curves. In many applications it is desirable for the classifier to
perform well over a wide range of operating conditions, i.e., the misclassification
costs or the relative importance between Pr and Re, and the class priors. Global
curves depict the trade-offs between different evaluation metrics under different
operating conditions, without reducing them to an incomplete scalar measure.

The ROC curve is widely used for two-class classifiers: it plots TPR vs FPR
as a function of the decision threshold. A classifier with a specific threshold cor-
responds to a point in ROC space; a potentially optimal classifier lies on the
ROC convex hull (ROCCH) of the available points, regardless of operating con-
ditions. The best thresholds correspond to the upper-left point, corresponding
to the higher TPR and the lower FPR (see Fig. 4(a)). A drawback of the ROC
space is that it does not reflect the impact of imbalance, since TPR and FPR do
not depend on class priors [4]. The performance of a classifier for a given skew
level can be indirectly estimated in terms of EC, since in ROC space, each oper-
ating condition corresponds to a set of isoperformance lines with identical slope.
An optimal classifier for a given operating condition is found by intersecting the
ROCCH with the upper-left isoperformance line.
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When Pr and Re are used, their trade-off across different decision thresholds
can be evaluated by the precision-recall (PR) curve, which plots Pr vs Re. The
PR curve is sensitive to class imbalance, given its dependence on Pr. However,
different operating conditions (skew levels) lead to different PR curves, which
makes classifier comparison difficult. Moreover, differently from ROC space, the
convex hull of a set of points in PR space has no clear meaning [7]. If the F-
measure is used, its isometrics can be analytically obtained in PR space, analo-
gously to EC isometrics in ROC space; however they are hyperbolic [7,9], which
makes it difficult to visualize classifier performance over a range of decision
thresholds, skew levels, and preference of Pr to Re. In the case of EC this prob-
lem has been addressed by the CC visualization tool, described below, and by its
BC extension. Inspired by CC, we propose in Sect. 3 an analogous visualization
tool for the F-measure.

Expected Costs Visualization Tools. CCs [3] are used to visualize EC over a
range of misclassification costs and skew levels. More precisely, CCs visualize
the normalised EC (NEC), which is defined as EC divided by the maximum
possible value of EC; the latter value turns out to be P (+)CFN +P (−)CFP, and
NEC can be written as:

NEC = (FNR − FPR)PC(+) + FPR ∈ [0, 1], (5)

where PC(+) is the “probability times cost” normalization term, which is defined
as:

PC(+) =
P (+) · CFN

P (+) · CFN + P (−)CFP
∈ [0, 1]. (6)

CCs are obtained by depicting NEC versus PC(+) on a [0, 1]× [0, 1] plot, which
is named “cost space”. Note that NEC = FPR, if PC(+) = 0, and NEC =
FNR = 1 − TPR, if PC(+) = 1. The always positive and always negative
classifiers correspond to two lines connecting points (1,0) to (0,1), and (0,0) to
(1,1), respectively, in the cost space. The operating range of a classifier is the
set of operating points for which it dominates both these lines [3]. By defining:

m =
CFP

CFP + CFN
, where 0 < m ≤ 1 (7)

m can be seens as weighing the importance of both classes, and Eq. (6) can be
rewritten as:

PC(+) =
(1/m − 1) · P (+)

(1/m − 2) · P (+) + 1
(8)

The CCs of two classifiers Ci and Cj may cross: in this case each classifier
outperforms the other for a certain range of operating points.

Interestingly, there is a point-line duality between CC and ROC space: a
point in ROC space is a line in cost space, and vice versa. The lower envelope of
cost lines corresponds to the ROCCH in ROC space. In cost space quantitatively
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evaluating classifier performance for given operating conditions does not require
geometric constructions as in ROC space, but only a quick visual inspection [3].
This helps users to easily compare classifiers to the trivial classifiers, to select
between them, or to measure their difference in performance [3].

BCs [5] are a variant of CCs – they visualize classifier performance assuming
that the classifier scores are estimates of the posterior class probabilities, without
requiring optimal decision threshold for a given operating condition.

No performance visualization tools analogous to CCs or BCs exist for the
F-measure: defining and investigating such a space is the subject of the next
section.

3 The F-Measure Space

We propose a visualization tool analogous to CC for evaluating and comparing
the F-measure of one or more classifiers under different operating conditions,
i.e., class priors and α. To this aim we rewrite the F-measure from Eq. (3) to
make the dependence on P (+) and α explicit:

Fα =
TPR

α(TPR + λ · FPR) + (1 − α)
(9)

=
1/αTPR

1/α + 1/P (+)FPR + TPR − FPR − 1
(10)

In contrast to the EC of Eqs. (1) and (10) indicates that Fα cannot be written as
a function of a single parameter. However, since our main focus is performance
evaluation under class imbalance, we consider the F-measure as a function of
P (+) only, for a fixed α value. Accordingly, we define the F-measure curve of a
classifier as the plot of Fα as a function of P (+), for a given α.

F-Measure Curve of a Classifier. For a crisp classifier defined by given values
of TPR and FPR, the F-measure curve is obtained by simply plotting Fα as
a function of P (+), for a given α, using Eq. (10). Equation (10) implies that,
when P (+) = 0, Fα = 0, and when P (+) = 1, Fα = TPR/(α(TPR − 1) + 1).
It is easy to see that, when TPR > FPR (which is always the case for a non-
trivial classifier), Fα is an increasing and concave function of P (+). For different
values of α one gets a family of curves. For α = 0 we have Fα = TPR, and for
α = 1 we have Fα = Pr. Thus, for any fixed α ∈ (0, 1), each curve starts at
Fα = 0 for P (+) = 0, and ends in Fα = Pr for P (+) = 1. By computing dFα/dα

from Eq. (10), one also obtains that all curves (including the one for α = 0)
cross when P (+) = FPR/(FPR − TPR + 1). Figure 1 shows an example for a
classifier with TPR = 0.8 and FPR = 0.15, and for five α values. CCs are also
shown for comparison.

Consider now changing the decision threshold for a given soft classifier and
a given α value. Whereas a point in ROC space corresponds to a line in cost
space, it corresponds to a (non-linear) curve in F-measure space. As the decision
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Fig. 1. Cost curves (left) and F-measure curves (right) for a given classifier with TPR
= 0.8 and FPR = 0.15, for different values of m and α. Note that for all values of P (+):
(1) for m = 0, EC = 1 − TPR, (2) for m = 1, EC = FPR, (3) for α = 0, Fα = TPR.

threshold changes, one obtains a curve in ROC space, a family of lines in cost
space, and a family of curves in F-measure space. More precisely, as the decision
threshold increases (assuming that higher classifier scores correspond to a higher
probability of the positive class), the ROC curve starts at TPR = 0 and FPR =
0, and proceeds towards TPR = 1 and FPR = 1. For a given value of α, the
corresponding F-measure curves move away from the Y axis and get closer to
the diagonal line connecting the lower-left point P (+) = 0, Fα = 0 to the upper-
right point P (+) = 1, Fα = 1. An example is shown in Fig. 2. For any given
operating condition (i.e., value of P (+)), only one decision threshold provides
the highest Fα. Accordingly, the upper envelope of the curves that correspond
to the available pairs of (TPR, FPR) values shows the best performance of the
classifier with the most suitable decision threshold for each operating condition.

Comparing Classifiers in the F-Measure Space. Consider two classifiers with
given values of (TPRi, FPRi) and (TPRj , FPRj), and a fixed value of α.
From Eq. (10) one obtains that, if FPRj < FPRi and TPRj < TPRi, or when
FPRj > FPRi and TPRj > TPRi, then the F-measure curves cross in a single
point characterized by:

P ∗
i,j(+) =

FPRi · TPRj − FPRj · TPRi

(1 − 1/α)(TPRj − TPRi) + FPRi · TPRj − FPRj · TPRi
. (11)

It is also easy to analytically determine which of the classifiers outperform the
other for lower or higher P (+) values than P ∗

i,j(+). If the above conditions do
not hold, one of the classifiers dominates the other for all values of P (+) > 0;
the detailed conditions under which F j

α > F i
α or F j

α < F i
α are not reported here

for the sake of simplicity, but can be easily obtained as well. Examples of the
two cases above are shown in Fig. 3.

In general, given any set of crisp classifiers, the best one for any given P (+)
value can be analytically determined in terms of the corresponding TPR and
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Fig. 2. A soft classifier in ROC space (ROCCH), inverted PR space (for three values
of P (+)), cost space (m = 0.5) and F-measure space (α = 0.5), for six threshold
values Th1 > Th2 > . . . > Th6 corresponding to TPR1 = 0, 0.55, 0.75, 0.88, 0.98, 1, and
FPR1 = 0, 0.08, 0.15, 0.28, 0.5, 1. The upper envelope of the cost and F-measure curves
is shown as a thick, blue line. (Color figure online)

FPR values, and can be easily identified by the corresponding F-measure curve.
Similarly, the overall performance of two or more soft classifiers can be easily
compared by visually comparing the upper envelopes of their F-curves.

An example of the comparison of two soft classifiers, with six different thresh-
old values, is shown in Fig. 4, where C1 is the same as in Fig. 2. In ROC space,
the ROCCH of C1 and C2 cross on a single point around FPR = 0.3. The lower
envelopes of the corresponding CCs cross around PC(+) = 0.7, and thus C1

and C2 perform the same for approximately 0.6 < PC(+) < 0.7, whereas C1

outperforms C2 for PC(+) < 0.6. When the F-measure is used, comparing C1

and C2 for different skew levels in PR space is more difficult, instead, as shown
by the corresponding (inverted) PR curves. This task is much easier in the F-
measure space; in this example it can be seen that the upper envelopes of the
F-measure curves of C1 and C2 cross: C2 outperforms C1 for P (+) < 0.4, they
perform the same for 0.4 < P (+) < 0.6, and C1 outperforms C2 for P (+) > 0.6.
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Fig. 3. F-measure curves of two classifiers, for α = 0.5. Left: (TPR1, FPR1) =
(0.98, 0.5), (TPR2, FPR2) = (0.93, 0.6): C1 dominates C2. Right: (TPR1, FPR1) =
(0.55, 0.08), (TPR2, FPR2) = (0.5, 0.03): the two curves cross at the P ∗

1,2(+) value of
Eq. (11) shown in red. (Color figure online)

These example shows that comparing the F-measure of two (or more) classifiers
over all skew levels in F-measure space is as easy as comparing their EC in cost
space.

Selecting the Best Decision Threshold or the Best Classifier. ROC curves can
be used to set parameters like the optimal decision threshold, or to select the
best classifier, for a given operating condition. To this aim, when the EC is used
as the performance measure, the ROCCH of the classifier(s) is found and the
optimal classifier (or parameter value) is selected by intersecting the upper-left
EC iso-performance line corresponding to the given operating condition with the
ROCCH. This process is easier in cost space, where the operating condition is
shown on the X axis. Analogously, when the F-measure is used, this process is
easier in the F-measure space than in PR space. For this purpose, the classifier(s)
can be evaluated during design on a validation set (or on different validation
sets with different imbalance levels, if the imbalance level during operation is
unknown); then, during operation, the imbalance level of the data is estimated
and the classification system is adapted based on its performance in cost or
F-measure space.

4 Synthetic Examples

We give an example of classifier performance evaluation and comparison in F-
measure space and, for reference, in ROC, PR, and cost spaces. In particular, we
show how the effect of class imbalance can be observed using these global visu-
alization tools. To this aim we generate a non-linear, 2D synthetic data set: the
negative class is uniformly distributed, and surrounds the normally distributed
positive class with mean μ+ = (0.5, 0.5) and standard deviation σ+ = 0.33. The
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Fig. 4. Comparison between two soft classifiers (C1 is the same as in Fig. 2) with six
threshold values in ROC space, inverted PR space, cost space (m = 0.5) and F-measure
space (α = 0.5). Note that in cost and F-measure spaces the lower and upper envelopes
of the curves corresponding to the six threshold values are shown, respectively.

class overlap is controlled by the minimum distance δ = 0.15 of negative samples
to μ+. We consider three classifiers: Naive Bayes (C1), 5-NN (C2), and RBF-
SVM (C3). We draw 2000 samples from each class (M− = M+ = 2000), and
use half of them for balanced training. To visualize classifier performance under
different operating conditions, we consider different imbalance levels for testing
(which simulates the classifier deployment phase). To this aim, we draw from
the remaining 2000 samples different testing data subsets of fixed size equal to
1000. The number of testing samples from both classes is chosen as follows: for
P (+) < 0.5, M+ = 500, M− = λM+, where λ ∈ {0.1, . . . , 0.9} with a step of
0.05; for P (+) > 0.5, M− = 500, M+ = λM−, with λ chosen in the same way;
for P (+) = 0.5, M+ = M− = 500.

The performance of the three crisp classifiers, using a decision threshold
of 0.5, is first compared in F-measure and cost spaces in Figs. 5a and b, for
0.1 < P (+) < 0.9, α = 0.1, 0.5, 0.9, and m = 0.1, 0.5, 0.9. It can be seen that
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Fig. 5. Performance comparison among Naive Bayes (C1), 5-NN (C2) and RBF-SVM
(C3) in different spaces.

some of the corresponding curves cross, depending on α and m: in this case
each classifier outperforms the other for a different range of values of PC(+) or
P (+); these ranges can be easily determined analytically. The performance of
the same, soft classifiers across different decision thresholds is then compared in
ROC and PR spaces for three values of P (+) = 0.1, 0.5, 0.9 (Figs. 5c and d), and,
for all possible values of P (+), in cost and F-measure spaces (Figs. 5e and f).
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As expected, ROC space is not affected by the degree of class imbalance, i.e.,
by changes in P (+). In PR space each value of P (+) leads to a different curve
for a given classifier, instead, but visual comparison of the corresponding F-
measure is very difficult: indeed this would require to draw also the hyperbolic
iso-performance lines, and anyway only a small, finite number of both P (+)
and Fα values can be considered in this space, which does not allow a complete
comparison. In cost and F-measure spaces the performance of each classifier for
all possible values of P (+) is visualized by a single curve, instead, for a given
value of m (in cost space) or α (in F-measure space). In these spaces visual
comparison of the corresponding performance measure is very easy, and can
be carried out for all possible operating conditions (i.e., values P (+)). In this
example, from Figs. 5e and f one can conclude that, in terms of both EC and
F-measure, C1 and C3 perform nearly equally across all operating conditions.
Moreover, classifier C2 dominates both C1 and C3 for all values of P (+); however
the amount by which C2 outperforms them is very small in terms of the F-
measure, when P (+) is higher than about 0.6, and in terms of EC, when P (+)
is around 0.7.

5 Conclusions

In this paper, we reviewed the main existing scalar and global measures and visu-
alization tools for classifier performance evaluation, focusing on class imbalance.
Then we proposed a new, specific visualization tool for the scalar F-measure,
which is widely used for class imbalance problems, filling a gap in the literature.

Similarly to cost curves, the proposed F-measure curves allow to easily eval-
uate and compare classifier performance, in terms of the F-measure, across all
possible operating conditions (levels of class imbalance) and values of the deci-
sion threshold, for a given preference weight between precision and recall. This
space can be used to select the best decision threshold for a soft classifier, and
the best soft classifier among a group, for a given operating condition. In ongoing
research, we are investigating how to use the F-measure space for the design of
classifier ensembles that are robust to imbalance, and to adapt learning algo-
rithms to class imbalance.
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