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Abstract. Sign language is a main communication channel among hear-
ing disability community. Automatic sign language transcription could
facilitate better communication and understanding between hearing dis-
ability community and hearing majority.
As a recent work in automatic sign language transcription has discussed,
effectively handling or identifying a non-sign posture is one of the key
issues. A non-sign posture is a posture unintended for sign reading and
does not belong to any valid sign. A non-sign posture may arise during
sign transition or simply from an unaware posture. Confidence ratio has
been proposed to mitigate the issue. Confidence ratio is simple to com-
pute and readily available without extra training. However, confidence
ratio is reported to only partially address the problem. In addition, con-
fidence ratio formulation is susceptible to computational instability.
This article proposes alternative formulations to confidence ratio, inves-
tigates an issue of non-sign identification for Thai Finger Spelling recog-
nition, explores potential solutions and has found a promising direction.
Not only does this finding address the issue of non-sign identification,
it also provide some insight behind a well-learned inference machine, re-
vealing hidden meaning and new interpretation of the underlying mech-
anism. Our proposed methods are evaluated and shown to be effective
for non-sign detection.

Keywords: Hand sign recognition · Thai Finger Spelling · Open-set de-
tection · Novelty detection · Zero-shot learning · Inference interpretation

1 Introduction

Sign language is a main face-to-face communication channel in a hearing dis-
ability community. Like spoken languages, there are many sign languages, e.g.,
American Sign Language (ASL), British Sign Language (BSL), French Sign Lan-
guage (LSF), Spanish Sign Language (LSE), Italian Sign Language (LIS), Ger-
man Sign Language (DGS), Chinese Sign Language (CSL), Japanese Sign Lan-
guage (JSL), Indo-Pakistani Sign Language (IPSL), Thai Sign Language (TSL),
etc. A sign language usually has two schemes: semantic sign scheme and finger
spelling scheme. A semantic sign scheme uses hand gestures, facial expressions,
body parts, and actions to communicate meaning, tone, and sentiment. A finger
spelling scheme uses hand postures to represent alphabets in its corresponding
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language. Automatic sign language transcription would allow better communica-
tion between a deaf community and hearing majority. Sign language recognition
has been subjects of various studies: visual-based approach[2, 8, 9, 11, 17] and
sensory-glove-based approach[6, 10]. A recent study[9], investigating hand sign
recognition for Thai Finger Spelling (TFS), has discussed issues and challenges
in automatic transcription of TFS. Although the discussion is based on TFS,
some issues are general across languages or even general across domains beyond
sign language recognition. One of the key issues discussed in the study[9] is an
issue of a non-sign or an invalid TFS sign, which may appear unintentionally
during sign transition or from unaware hand postures.

The appearance of non-signs may undermine the overall transcription perfor-
mance. Nakjai and Katanyukul[9] proposed a light-weight computation approach
to address the issue. Sign recognition is generally based on multi-class classifica-
tion, whose output is represented in softmax coding. That is, a softmax output
capable of predicting one of K classes is noted y = [y1y2 . . . yK ]T , whose coding

bit yi ∈ [0, 1], i = 1, . . . ,K and
∑K

i=1 yi = 1. A softmax output y represents
predicted class k when yk is the largest component: k = arg maxi yi. Their ap-
proach is based on the assumption that the ratio between the largest value of the
coding bit and the rest shows the confidence of the model in its class prediction.
Softmax coding values have been normalized so that it can be associated to both
probability interpretation and cross-entropy calculation. Despite the benefits of
normalization, they use the penultimate values instead of the softmax values for
rationale that some information might have been lost during the softmax ac-
tivation. Penultimate values are inference values before going through softmax
activation (i.e., ak in Eq. 1). Specifically, to indicate a non-sign posture, they pro-
posed a confidence ratio, cr = a

b , where a and b are the largest and second largest
penultimate values, respectively: a = am and b = an where m = arg maxi ai and
n = arg maxi 6=m ai. Their confidence ratio has been reported to be effective in
identifying a posture that is likely to get a wrong prediction. However, on their
evaluating environment, they reported that the confidence ratio could hardly
distinguish the cause of the wrong prediction whether it is a misclassified valid
sign or it is a forced prediction on an invalid sign. In addition, generally each
penultimate output is a real number, ai ∈ R. This nature poses a risk on confi-
dence ratio formulation for when there is zero or a negative number, cr can be
misleading or its computation can even collapse (when denominator is zero).

Our study investigates development of an automatic hand sign recognition
for Thai Finger Spelling (TFS), alternative formulations to confidence ratio, a
non-sign issue and potential mitigations for a non-sign issue. TFS, designated
by the National Association of the Deaf in Thailand, has 25 hand postures to
represent 42 Thai alphabets using single-posture and multi-posture schemas[9].
Single-posture schema directly associates a hand posture to a corresponding
alphabet. Multi-posture schema associates a series of 2 to 3 hand postures to
a corresponding alphabet. Based on probability interpretation of an inference
output, Bayes theorem, and examining an internal structure of a commonly
adopted inference model, various formulation alternatives to confidence ratio
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and a mitigation to a non-sign issue are investigated (Section 3). Sections 2, 4,
and 5 provide related background, methodologies and experimental results, and
discussion and conclusions, respectively.

2 Background

TFS hand sign recognition. A recent visual-based state-of-the-art in TFS sign
recognition[9] frames hand sign recognition as a pipeline of hand localization and
sign classification problem. They proposed an approach based on color scheme
and contour area using Green’s theorem for hand localization. Then, an image
region dominated by a hand is scaled to a pre-defined size (i.e., 64 × 64) and
passed through a classifier, implemented with a convolution neural network.
The classifier predicts the most likely class out of the 25 pre-defined classes,
each corresponding to a valid TFS sign.

Most visual-based TFS sign recognition studies[9, 11, 17] focus on a static
image. However, a practical system should anticipate video and streaming data,
where unintended postures may be passed through the pipeline and cause con-
fusion to the final transcription result. Unintended postures can accidentally
match valid signs. This challenging case is worth further investigation and could
be addressed through a language model. However, even when the unintended
postures do not match any of the valid signs, a classifier is forced to predict
one out of its pre-defined classes. No matter which class it predicts, the predic-
tion is wrong. This could cause immediate confusion on its recognition result or
this can undermine performance of its subsequence process in case of using this
recognition as a part of a larger system.

Novelty, anomaly, outlier detections, and zero-shot learning. A conventional
classifier specifies a fixed number of classes it can predict and forced to predict.
This constraint allows it to be efficiently optimized to its classification task, but
it has a drawback, which is more apparent when the assumption of all-inclusive
classes is strongly violated. The concept of flagging out an instance belonging
to a class that an inference machine has not seen at all in the training phase is
a common issue and a general concern beyond sign language recognition. The
issue has been extensively studied under various terms1, e.g., novelty detection,
anomaly detection, outlier detection, and zero-shot learning.

Pimentel et al.[13] summarize a general direction in novelty detection. That
is, a detection method usually builds a model using training data containing no
examples or very few examples of the novel classes. Then, somehow depending
on approaches, a novelty score s is assigned to the data under question x and the
final novelty judgement is decided by thresholding, i.e., the data x is judged a
novelty (belonging to a new class) when s(x) > τ for τ is a pre-defined threshold.

To obtain the novelty score, various approaches have been examined. Pi-
mentel et al.[13] categorize novelty detection into 5 approaches: probabilistic,

1 Definition of novelty, anomaly, outlier, and zero-shot may be slightly different. Ap-
proaches may be various[13,19], but they are generally addressing a similar concern.
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distance-based, reconstruction-based, domain-based, and information-theoretic
based techniques. Probabilistic approach relies on estimating probability density
function (pdf) of the data. A sample x is tested by thresholding the value of its
pdf: pdf(x) < τ indicates x being novelty. Training data is used to estimate the
pdf. Although this approach has a strong theoretical support, estimating pdf
in practice requires a powerful generative model along with an efficient mecha-
nism to train it. Generative model at its fullest potential could provide greater
inference capacities on data, such as expressive representation, reconstruction,
speculation, generation, and structured prediction. Its applicability is much be-
yond novelty detection. However, high-dimension structured data renders this
requirement very challenging. A computationally traceable generative model is
a subject of highly active research on its own right. Another related issue is to
determine a sensible value for τ , in which many studies[1,3,15] have resorted to
extreme value theory (EVT)[12].

Distance-based approach is presumably[13] based on an assumption that data
seen in a training process is tightly clustered and data of new types locate far
from their nearest neighbors in the data space. Either a concept of nearest neigh-
bors[20] or of clustering[7] is used. Roughly speaking, a novelty score is defined
either by a distance between a sample x and its nearest neighbors or by a dis-
tance between x and its closest cluster centroids. Distance is often measured
with Euclidean or Mahalanobis distance. The approach relies on mechanism to
identify the nearest neighbors or the nearest clusters. This usually is compu-
tationally intensive and becomes a key factor attributed to its scalability issue
in terms of data size and data dimensions. Reconstruction-based approach in-
volves building a re-constructive model, sometimes called “auto-encoder,” which
learns to find a compact representation of input and reproduce it as an output.
Then, to test a sample, the sample is put through a reconstruction process and
a degree of dissimilarity between the sample and its reconstructed counterpart
is used as a novelty score. Hawkins et al.[4] uses a 3-hidden-layer ANN learned
to reproduce its input. Therefore, numbers of input and output nodes are equal.
The ANN is structured to have numbers of nodes in the hidden layers smaller
than a number of input or output nodes in order to force ANN to learn com-
pressed representation of the data. Any sample that cannot be reconstructed
well is taken for novelty, as this infers that its internal characteristics do not
align with the compressed structure fine tuned to the training data. This ap-
proach may also resort to distance measurement for a degree of dissimilarity,
but it does not require to search for the nearest neighbors. Therefore, once a
good auto-encoder is obtained, scalability is not as an issue as in a distance-
based approach. Domain-based approach is related to building a boundary of
the data domain in feature space. Any sample is considered novelty if its loca-
tion on feature space lies outside the boundary. Schölkopf et al.[16] proposed
one-class SVM for novelty detection. Its key factors are to have SVM learn to
build a boundary in feature space to adequately cover most training examples,
while having a user-defined parameter to control a degree to allow some training
samples to be outside the boundary. This compromising mechanism is a counter-
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measure to outliers in training data. The last approach is information-theoretic.
It involves measurement of information content in the data. It assumes that sam-
ples of novelty increase information content in the dataset significantly. As their
task is to remove outliers from data, He et al.[5] uses a decrease in entropy of a
dataset after removal of the samples to indicate a degree that the samples are
outliers. The samples are heuristically searched. Pimentel et al.[13] noted that
this approach often requires an information measure that is sensitive enough to
pick up the effect of novelty samples, especially when a number of these samples
are small.

Based on this categorization[13], probabilistic approach is closest to the di-
rection our work is taking. However, unlike many early works, firstly, rather than
requiring a dedicated model, our proposed method builds upon a well-adopted
classifier. It can be used with an already-trained model without requirement
for re-training. Secondly, most works including a notable work of OpenMax[1]
determine a degree of novelty of a sample by how unlikely it is to belong to
any seen classes. Another word, most previous works deduce probability of the
sample being novelty by examining every probability of the sample being of the
seen class, i.e., small values of Pr[class = i|x], for all i = 1, . . . ,K are used to
deduce the degree of novelty of x. Our work follows our interpretation of softmax
output, i.e., yk ≡ Pr[class = k|s,x], where s represents a state of a valid sign
(not novelty). How likely sample x is a novelty then can be directly deduced.

3 Prediction confidence and non-sign identification

Confidence score. Since yk is associated with a probability of being in class k
and yk is generally obtained through a softmax mechanism (Eq. 1), our study
develops alternative formulations, as shown in Table 1. Since yk has a direct
probability interpretation, formulation cs1 is straightforward. Formulation cs2 is
associated to a logarithm of probability. Formulation cs3 is similar to confidence
ratio, but it is an attempt to link an empirical utility to a theoretical rationale
(probabilistic interpretation). In addition, formulation cs3 is preferably in term
of computational cost and stability. Formulation cs4, a logit function, has a more
direct interpretation of the starting assumption that the confidence is high when
probability of the predicted class is much higher than the rest.

Latent cognizance. Given the input image x, the predicted sign in softmax coding
y ∈ RK is derived through a softmax activation: for k = 1, . . . ,K,

yk =
eak∑K
i=1 e

ai

, (1)

where ak is the kth component of penultimate output, which has K defined
classes. Each yk can be interpreted as a probability that the given image belongs
to sign class k, or more precisely a probability that the given valid input belongs
to class k. That is,

yk ≡ Pr[k|s,x] (2)
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Table 1. Formulations under investigation for confidence score and lalent cognizance
function. Softmax value yl = eal∑K

i=1 eai
, where K is a number of predefined classes;

al is a penultimate value; k and j are indices of the largest and the second largest
components, respectively.

Confidence cs1 = yk cs2 = ak cs3 = log
(

yk
yj

)
cs4 = log

(
yk

1−yk

)
score = ak − aj

Latent
cognizance g̃0(a) = a g̃1(a) = ea g̃2(a) = a2 g̃3(a) = a3 g̃4(a) = |a|

where k indicates one of the K valid classes, x is the input under question, and
s indicates that x is representing one of the valid classes (being a sign). For
conciseness, conditioning on x may be omitted, e.g., Eq. 2 may be written as
yk = Pr[k|s]. Noted that, this insight is distinct to a common interpretation[1]
that softmax coding bit yk of a well-learned inference model estimates probability
of being in class k, i.e., yk = Pr[k|x]. This common notion does not emphasize
its conditioning on an inclusiveness of all pre-defined classes.

To identify a non-sign is another side of determining the probability of being
a sign: Pr[s̄|x] = 1 − Pr[s|x]. To deduce Pr[s|x], or concisely Pr[s], consider

Bayesian relation: Pr[k|s] = Pr[k,s]∑K
i=1 Pr[i,s]

where Pr[k, s] is a joint probability.

Given the Bayesian relation, inference mechanism (Eq. 1), and our interpretation
of yk (Eq. 2), the following relation is found:

eak∑K
i=1 e

ai

=
Pr[k, s]∑K
i=1 Pr[i, s]

. (3)

It is noticeable that term eak is in the same structure as joint probability
Pr[k, s] is. Here, we draw the assumption that penultimate value ak relates to
joint probability Pr[k, s] through an unknown function u : ak(x) 7→ Pr[k, s|x].
Theoretically, this unknown function is difficult to exactly characterize. In prac-
tice, even without exact characteristics of this mapping, a good approximate is
enough to accomplish a task of identifying a non-sign. Supposed there exists an
approximate mapping g, i.e., g(ak) ≈ Pr[k, s], therefore given g(ai)’s, a non-sign
can be identified by Pr[s|x] =

∑
i Pr[i, s|x] ≈

∑
i g(ai(x)). Further refining, to

lessen burden on enforcing proper probability properties on g, define a “latent
cognizance” function g̃ such that g̃(ai(x)) ∝ g(ai(x)). Consequently, define pri-
mary and secondary latent cognizances as the following relations, respectively:

g̃ (ai(x)) ∝ Pr[i, s|x], (4)∑
i

g̃ (ai(x)) ∝ Pr[s|x]. (5)

Various formulations (Table 1) are investigated for an effective latent cog-
nizance function. Identity g̃0 is chosen for its simplicity. Exponential g̃1 is chosen
for its immediate reflection on Eq. 3. It should be noted that a study on a whole
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family of g̃ = m ·ea, where m is a constant, is worth further investigation. Other
formulations are intuitively included on an exploratory purpose.

4 Experiments

Various formulations of confidence score and choices of latent cognizance are
evaluated on TFS sign recognition system. Our TFS sign recognition follows
the current state-of-the-art in visual TFS sign recognition[9] with a modification
of convolution neural network (CNN) configuration and its input resolution.
Instead of a 64× 64 gray-scale image, our work uses a 128× 128 color image as
an input for CNN. Our CNN configuration uses a VGG-16[18] with the 2 fully-
connected layers each having 2048 nodes, instead of 3 fully-connected layers in
the original VGG-16. Fig. 1 illustrates a processing pipeline of our TFS sign
recognition.

Fig. 1. Processing pipeline of our TFS sign recognition.

Sign data. The main dataset contains images of 25 valid TFS sign postures.
Each valid TFS sign data is collected from 12 signers and posed 5 times by each
signer. That results in a total number of 1500 images (5 times ×25 postures
×12 signers), which are augmented to 15000 images. All augmented images are
visually inspected for human readability and semantic integrity. Every image is
a color image with a resolution of approximately 800× 600 pixels.

Experimentation. The data is separated by signer into training set (11250 images
from 9 signers making up as 75%) and test set (the 3750 images from the 3
signers, making up 25%). The experiments are conducted for 10 repetitions in a
10-fold manner. Specifically, each repetition separates data differently, e.g., the
1st fold uses data from signers 1, 2, and 3 for test and uses the rest for training;
the 2nd fold uses data from signers 2, 3, and 4 for test; and so on till the last
fold using data from signers 10, 1, and 2 for test.

The mean Average Precision (mAP), commonly used in object detection[14],
is a key performance measurement for evaluation of our TFS sign recognition.
Area under curve (AUC) and receiver operating characteristic (ROC) are used
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to evaluate effectiveness of various formulations for confidence score and latent
cognizance. AUC is often referred to an estimate area under Precision-Recall
curve, while ROC is usually referred to an estimate area under Detection-Rate–
False-Alarm-Rate curve. However, generally both areas are equivalent. We use
them to differentiate the purpose of our evaluation rather than taking them as
different performance metrics. AUC is used for identification of samples not to
be correctly predicted2. It is more direct to measure a quality of a replacement
for the confidence ratio. ROC is used for identifying non-sign samples3. It is
more direct to the very issue of non-sign postures.

Non-sign data. In addition to the sign dataset, a non-sign dataset containing
mixed-posing invalid TFS sign postures is used to evaluate non-sign identification
methods. The invalid TFS posture data is collected from a signer and augmented
to 1122 images. All has been visually inspected that they all are readable and
do not accidentally match to any of the 25 valid signs.

Results. Table 2 shows TFS recognition performance of the previous studies and
our work. The high performing mAP (97.59%) indicates that the model is well-
learned. All data are shown to be non-normal distributed, based on Lilliefors
test at 0.05 level. Wilcoxon rank-sum test is conducted on each treatment for
comparing (1) difference between CP and IP, (2) difference between CP and NS,
and (3) difference between IP and NS. The notations CP, IP, and NS represent
samples being correctly predicted, being misclassified, and being a non-sign,
respectively. At 0.01 level, Wilcoxon rank-sum test confirms all 3 differences in all
treatments (including confidence ratio, 4 formulations for confidence score, and 5
latent cognizance functions). Figure 2 shows boxplots of all treatments. Although
the significance tests confirm that the 3 groups can be distinguishable using any
of the treatments, the boxplots show a wide range of degrees of distinguishment,
e.g., cognizance g̃ = a3 (4th plot in Fig. 2) seems to be easier than others on
thresholding the 3 cases. To measure a degree of effectiveness, Tables 3 and 4
provide AUC and ROC for various methods under investigation. Noted that,
since treatment g̃0 gives results in a different manner than others: a higher value
associates to a non-sign (c.f. a lower value in others), the evaluation logic is
adjusted accordingly.

On finding an alternative to confidence ratio, maximal penultimate output
ak seems to be a good replacement such that it provides the largest AUC (0.934)
and it is simple to obtain (no extra computation, thus no risk of computational
instability). On addressing a non-sign issue, latent cognizance with cubic function
g̃(a) = a3 gives the best ROC (0.929). Its smoothed estimate densities4 of non-
sign samples (NS) and sign samples (combining CP and IP) are shown on the

2 Positive is defined to be a sample of either a non-sign or an incorrect prediction.
3 Positive is defined to be a non-sign.
4 A normalized Gaussian-smoothing version of histogram produced through smoothed

density estimates of ggplot2 (http://ggplot2.tidyverse.org) with default param-
eters.

http://ggplot2.tidyverse.org
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left of Fig. 3. Plots of detection rate and false alarm rate of the 4 strongest
candidates are shown on the right of Fig. 3.

Table 2. Performance of visual-based TFS sign recognition.

Method TFS Data Size Key Performance
Coverage (# images) factors

Chansri and Srinonchat[2] 16 signs 320 Kinect 3D camera, HOG and ANN 83.33%
Pariwat and Seresangtakul[11] 15 signs 375 SVM 91.20%
Silanon[17] 21 signs 2100 HOG and ANN 78.00%
Nakjai and Katanyukul[9] 25 signs 1375 Hand Extraction and CNN 91.26%
Our work 25 signs 15000 Hand Extraction and VGG-16 97.59%

Table 3. Evaluation of confidence score formulations.

cr = ak
aj

cs1 = yk cs2 = ak cs3 = ak − aj cs4 = log
(

yk
1−yk

)
AUC 0.814 0.919 0.934 0.900 0.919

ROC 0.740 0.879 0.921 0.847 0.879

Table 4. Evaluation of various g̃ formulations on
∑

i g̃(ai) ∝ Pr[s].

Identity Exponential Quadratic Cubic Absolute
g̃0(a) = a g̃1(a) = ea g̃2(a) = a2 g̃3(a) = a3 g̃4(a) = |a|

AUC 0.437 0.930 0.855 0.934 0.737

ROC 0.419 0.920 0.845 0.929 0.726

5 Discussion and Conclusions

The cubic function g̃(a) = a3 has shown to be the best cognizance function
among other candidates, including exponential g̃(a) = ea. In addition, the cubic
cognizance has ROC par to the max-penultimate confidence score. On the other
hand, the max-penultimate confidence score also provide a competitive ROC
and could be used to identify non-sign samples as well. Noted that OpenMax—a
notable work in novelty detection—uses penultimate output as one of its cru-
cial parts to identify novelties. Our finding could contribute to the development
of OpenMax. A study of using cubic cognizance in OpenMax system may be
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Fig. 2. Upper: Boxplots of confidence ratio and candidates for confidence score. Y-
axis shows treatment values in linear scale. Lower: Boxplots of 5 candidates for latent
cognizance function. Y-axis shows

∑
i g̃(ai) values (g̃0 and g̃4 in linear scale; the rest

in log scale). Boxplots are shown in 3 groups: CP for correctly classified samples; IP for
misclassified samples; NS for non-sign samples.

Fig. 3. (a) Illustration of smoothed estimated densities of sign (denoted SS) and non-
sign (denoted NS) data over

∑
i a

3
i . (b) Detection rate versus false alarm rate curves of

the 4 strongest candidates.



Title Suppressed Due to Excessive Length 11

another promising direction, since it is shown to be more effective than penulti-
mate output. Another point worth noting is that the previous work[9] evaluated
confidence score on identifying non-signs and could not confirm its effectiveness
with the significance tests. Their results agree with our early experiments when
using a lower resolution image, a smaller CNN structure, and training and test-
ing on smaller datasets. In our early experiment, only a few of the treatments
could be confirmed for non-sign identification. Those that were confirmed are
consistent with ROC presented here. This observation implies a strong relation
between state of the inference model and non-sign-identification effectiveness.
This relation and its details should be systematically investigated. Regarding
applications of the techniques, thresholding can be used and a proper value for
threshold is needed to be determined. This can be simply achieved through trac-
ing the Detection-Rate–False-Alarm-Rate curve with the corresponding thresh-
old values. Alternatively, the proper threshold can be determined based on Ex-
treme Value Theory, like many previous studies[1, 3, 15]. Another interesting
research direction is to find a similar solution for other inference families. Our
techniques target a softmax-based classifier, which is well-adopted especially
in artificial neural network. However, Support Vector Machine (SVM), another
well-adopted classifier, is built on a different paradigm. Application of either
confidence score or latent cognizance to SVM might not work or might be to-
tally irrelevant. Investigation into the issue on other inference paradigms could
provide a unified insight of the underlying inference mechanism and it could
be beneficial beyond addressing the novelty issue. Regarding starting assump-
tions, high ROC values of exponential and cubic cognizances support our new
interpretation and its following assumptions. However, the penultimate output,
according to our new interpretation, has relation ak(x) = log(Pr[k|s,x]) + C,
where C = − log

∑
i ai(x). This relation only partially agrees with the exper-

imental results. High value of AUC agrees with log(Pr[k|s,x]) that a class is
confidently classified, but Pr[k|s,x] alone is not enough to determine a non-
sign, which needs Pr[s̄|x]. This may imply that our research is going on a right
direction, but it still needs more investigation to complete the picture.

In brief, our study investigates (1) alternatives to confidence ratio and (2)
methods to identify a non-sign. The max-penultimate output is shown to be a
good replacement for confidence ratio in terms of detection performance and
simplicity. Its large value associates to a sample likely to be correctly classified
and vice versa. The cognizance

∑
i a

3
i is shown to be a good indicator for a

non-sign such that
∑

i a
3
i (x) ∝ Pr[s|x], or low value of

∑
i a

3
i (x) associates to

a non-sign sample. To warp up our article, our findings give an insight into
a softmax-based inference machine and provide a tool to measure a degree of
confidence in the prediction result as well as a tool to identify a novelty or
an anomaly. The implications may go beyond our current scope of TFS hand-
sign recognition and contribute to novelty detection, open-set recognition, and
other similar concepts. Latent cognizance is very satisfactory for its simplicity
and effectiveness in identifying non-signs. These would help improve an overall
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quality of the translation, which in turn hopefully leads to a better understanding
among people of different physical backgrounds.
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