Skip to main content

Efficient 3D Protein Structure Alignment on Large Hadoop Clusters in Microsoft Azure Cloud

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Facing the Challenges of Data Proliferation and Growing Variety (BDAS 2018)

Abstract

Exploration of 3D protein structures provides a broad potential for possible applications of its results in medical diagnostics, drug design, and treatment of patients. 3D protein structure similarity searching is one of the important exploration processes performed in structural bioinformatics. However, the process is time-consuming and requires increased computational resources when performed against large repositories. In this paper, we show that 3D protein structure similarity searching can be significantly accelerated by using modern processing techniques and computer architectures. Results of our experiments prove that by distributing computations on large Hadoop/HBase (HDInsight) clusters and scaling them out and up in the Microsoft Azure public cloud we can reduce the execution times of similarity search processes from hundred of hours to minutes. We will also show that the utilization of public clouds to perform scientific computations is very beneficial and can be successfully applied when scaling time-consuming computations over a mass of biological data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman, H.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  2. BioSQL Homepage. http://biosql.org/. Accessed 20 Jan 2018

  3. Bourne, P., Berman, H., Watenpaugh, K.: The macromolecular crystallographic information file (mmCIF). Methods Enzymol. 277, 571–590 (1997)

    Article  Google Scholar 

  4. George, L.: HBase: The Definitive Guide, 1st edn. O’Reilly Media, Sebastopol (2011)

    Google Scholar 

  5. Gibrat, J., Madej, T., Bryant, S.: Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)

    Article  Google Scholar 

  6. Hazelhurst, S.: PH2: an Hadoop-based framework for mining structural properties from the PDB database. In: Proceedings of the 2010 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists, pp. 104–112 (2010)

    Google Scholar 

  7. Holm, L., Kaariainen, S., Rosenstrom, P., Schenkel, A.: Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008)

    Article  Google Scholar 

  8. Hung, C.L., Lin, Y.L.: Implementation of a parallel protein structure alignment service on cloud. Int. J. Genom. Article ID 439681, pp. 1–8 (2008)

    Google Scholar 

  9. Leinweber, M., et al.: GPU-based cloud computing for comparing the structure of protein binding sites. In: 2012 6th IEEE International Conference on Digital Ecosystems and Technologies, DEST, pp. 1–6 (2012)

    Google Scholar 

  10. Leinweber, M., Fober, T., Freisleben, B.: GPU-based point cloud superpositioning for structural comparisons of protein binding sites. IEEE/ACM Trans. Comput. Biol. Bioinform. PP(99), 1–14 (2018)

    Google Scholar 

  11. Leinweber, M., et al.: CavSimBase: a database for large scale comparison of protein binding sites. IEEE Trans. Knowl. Data Eng. 28(6), 1423–1434 (2016)

    Article  Google Scholar 

  12. Mell, P., Grance, T.: The NIST definition of Cloud Computing. Special Publication 800–145 (2011). http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. Accessed 7 May 2018

  13. Microsoft Azure Cloud Services Specification: Sizes for Cloud Services. https://azure.microsoft.com/pl-pl/documentation/articles/cloud-services-sizes-specs/. Accessed 7 May 2018

  14. Mrozek, D., Brozek, M., Małysiak-Mrozek, B.: Parallel implementation of 3D protein structure similarity searches using a GPU and the CUDA. J. Mol. Model. 20, 2067 (2014)

    Article  Google Scholar 

  15. Mrozek, D., Daniłowicz, P., Małysiak-Mrozek, B.: HDInsight4PSi: boosting performance of 3D protein structure similarity searching with HDInsight clusters in Microsoft Azure cloud. Inf. Sci. 349–350, 77–101 (2016)

    Article  Google Scholar 

  16. Mrozek, D., Kutyła, T., Małysiak-Mrozek, B.: Accelerating 3D protein structure similarity searching on Microsoft Azure Cloud with local replicas of macromolecular data. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 254–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_24

    Chapter  Google Scholar 

  17. Mrozek, D., Małysiak-Mrozek, B.: CASSERT: a two-phase alignment algorithm for matching 3D structures of proteins. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2013. CCIS, vol. 370, pp. 334–343. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38865-1_34

    Chapter  Google Scholar 

  18. Mrozek, D., Małysiak-Mrozek, B., Kłapciński, A.: Cloud4Psi: cloud computing for 3D protein structure similarity searching. Bioinformatics 30(19), 2822–2825 (2014)

    Article  Google Scholar 

  19. Mrozek, D., Suwała, M., Małysiak-Mrozek, B.: High-throughput and scalable protein function identification with Hadoop and Map-only pattern of the MapReduce processing model. Knowl. Inf. Syst. (in Press). https://doi.org/10.1007/s10115-018-1245-3

  20. Mrozek, D., Wieczorek, D., Malysiak-Mrozek, B., Kozielski, S.: PSS-SQL: protein secondary structure - structured query language. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 1073–1076 (2010)

    Google Scholar 

  21. Mrozek, D., Małysiak-Mrozek, B., Adamek, R.: P3D-SQL: extending Oracle PL/SQL capabilities towards 3D protein structure similarity searching. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 548–556. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16483-0_53

    Chapter  Google Scholar 

  22. Mrozek, D., Socha, B., Kozielski, S., Małysiak-Mrozek, B.: An efficient and flexible scanning of databases of protein secondary structures. J. Intell. Inf. Syst. 46(1), 213–233 (2016). https://doi.org/10.1007/s10844-014-0353-0

    Article  Google Scholar 

  23. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247(4), 536–540 (1995). http://www.sciencedirect.com/science/article/pii/S0022283605801342

    Google Scholar 

  24. National Research Council: Frontiers in Massive Data Analysis. National Academy Press, Washington, D.C. (2013)

    Google Scholar 

  25. Pang, B., Zhao, N., Becchi, M., Korkin, D., Shyu, C.R.: Accelerating large-scale protein structure alignments with graphics processing units. BMC Res. Notes 5(1), 116 (2012). https://doi.org/10.1186/1756-0500-5-116

    Article  Google Scholar 

  26. Prlić, A., et al.: Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 26, 2983–2985 (2010)

    Article  Google Scholar 

  27. Prlić, A., Yates, A., Bliven, S.: BioJava: an open-source framework for bioinformatics in 2012. Bioinformatics 28, 2693–2695 (2012)

    Article  Google Scholar 

  28. Shindyalov, I., Bourne, P.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)

    Article  Google Scholar 

  29. Sosinsky, B.: Cloud Computing Bible, 1st edn. Wiley, New York (2011)

    Google Scholar 

  30. Stivala, A.D., Stuckey, P.J., Wirth, A.I.: Fast and accurate protein substructure searching with simulated annealing and GPUs. BMC Bioinform. 11(1), 446 (2010). https://doi.org/10.1186/1471-2105-11-446

    Article  Google Scholar 

  31. Wesbrook, J., Ito, N., Nakamura, H., Henrick, K., Berman, H.: PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics 21(7), 988–992 (2005)

    Article  Google Scholar 

  32. Westbrook, J., Fitzgerald, P.: The PDB format, mmCIF, and other data formats. Methods Biochem. Anal. 44, 161–79 (2003)

    Google Scholar 

  33. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(2), 246–255 (2003)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Microsoft Research within Microsoft Azure for Research Award grant, and Statutory Research funds of Institute of Informatics, Silesian University of Technology, Gliwice, Poland (grant No. BK/213/RAU2/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Mrozek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Małysiak-Mrozek, B., Daniłowicz, P., Mrozek, D. (2018). Efficient 3D Protein Structure Alignment on Large Hadoop Clusters in Microsoft Azure Cloud. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Facing the Challenges of Data Proliferation and Growing Variety. BDAS 2018. Communications in Computer and Information Science, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-319-99987-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99987-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99986-9

  • Online ISBN: 978-3-319-99987-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics