INSTITUT FUR INFORMATIK

ST Ludwig
Lehr- und Forschungseinheit fiir Maximilians —
Programmier- und Modellierungssprachen Universitit —
Oettingenstrafie 67, D-80538 Miinchen Miinchen

A Visual Language for
Web Querying and Reasoning

Sacha Berger, Francois Bry, Sebastian Schaffert

Technical Report, Computer Science Institute, Munich, Germany
http://www.pms.informatik.uni-muenchen.de/publikationen
Forschungsbericht /Research Report PMS-FB-2003-6, June 2003

A Visual Language for Web Querying and
Reasoning

Sacha Berger, Francois Bry, Sebastian Schaffert

Institute for Computer Science, University of Munich

Abstract. As XML is increasingly being used to represent information
on the Web, query and reasoning languages for such data are needed.
This article argues that in contrast to the navigational approach taken
in particular by XPath and XQuery, a positional approach as used in
the language Xcerpt is better suited for a straightforward visual repre-
sentation. The constructs of the pattern- and rule-based query language
Xcerpt are introduced and it is shown how the visual representation

visXcerpt renders these constructs to form a visual query language for
XML.

1 Introduction

Five years after its initial specification in 1998, XML [I] has become the de
facto standard for data exchange. It is nowadays increasingly being used for
representing semistructured databases, Web documents, and in particular meta
information like ontological data (as in OWL [2]) or browsing contexts and user
models [3]. There is hence a need for languages that are suitable for both querying
and reasoning with semistructured data.

Many existing query languages, in particular the W3C proposals XPath and
XQuery, are navigational in the sense that their variable binding paradigm re-
quires the programmer to specify path navigations through the document (or
data item). In contrast, some other languages — such as UnQL [!] and Xcerpt
[5] — are pattern-based: their variable binding paradigm is that of mathematical
logics, i.e. the programmer specifies patterns (or terms) including variables. This
difference is discussed in Section 2.

In this article, it is argued that the pattern-based paradigm is particularly
well-suited as a base for a visual query language for semistructured databases.
The reason is that patterns are form-like two dimensional structures that con-
ceptually are very close to two dimensional visual representations. Arguably,
every visual or graphical language for XML and/or semistructured data (such
as XML-GL [6], GraphLog [7], VXT [3], BBQ [9] and Xing [10]) as well as the
veteran language QBE and improvements thereof (such as MS Access and sim-
ilar products) might be seen as having an (in general implicit) pattern-based
language as an (in general unconscious) foundation.

Interestingly, and maybe supporting the last above-mentioned claim, a visual
language for a pattern-based textual query and transformation language can

be developed simply by specifying a visual rendering (in contrast to a complex
transformation) of the textual programs very much like a CSS stylesheet specifies
a layout for an HTML document.

Besides the pattern-based nature, another property of the Xcerpt language
is of particular interest to visual querying: rule-based queries with a clear sepa-
ration of condition and result allows for a rather natural visual representation,
since an “if ...then ...” is easily conveyed even by novice users.

This article is organised as follows. Section 2 provides a discussion of the
navigational and positional approaches for query languages. The basic elements
of the declarative, rule- and pattern-based language Xcerpt are then introduced
in Section 3. In Section 4 it is shown how semistructured data in general and the
Xcerpt constructs in particular are visually represented in the language visX-
cerpt. Section 5 finally gives a summary about further and related work.

2 Positional vs. Navigational Data Selection

Essential to querying semistructured data is the selection of data items in a
document (i.e. rooted graph). Most widespread query languages for XML — e.g.
XQuery — rely on path selections expressed using XPath (or similar approaches).
XPath-like languages provide with constructs like regular expressions and wild
cards for specifying paths through a rooted graph. For instance, the XPath
expression /al[bl//c means “find the document nodes labelled ¢ that can be
reached from the document root via a child node labelled a having itself a child
node labelled b and having the c-labelled nodes as descendants”. Such node
selections can be called navigational.

For simple queries and transformations, the navigational approach is very
natural and results in simple programs. For more complex queries, especially
for queries involving several variables, the navigational approach often leads to
intricate programs.

Furthermore, the intertwining of construction and query parts in languages
such as XQuery and most of its precursors often yields programs that are difficult
to visualise properly.

Also, the possibility to specify forward and reverse axes in path languages
like XPath might further increase the complexity of query programs and an
equivalent query with only forward axes is often more intuitive.

A further important aspect of navigational node selections is that they do
not easily support the selection of several related nodes at once. Such multiple
node selections, however, are rather natural and are required by most non-trivial
queries. This is e.g. the case when one looks for bibliography entries combining
several aspects such as an author’s name, a keyword in the title, and a year
of publication. Everyone familiar with bibliographies immediately “visualises”
the shape or pattern of such a retrieval request and the respective positions
of the variables it refers to. Arguably, pattern-based or positional query and
transformation languages such as Xcerpt reflect and convey such an intuitive
“visualisation”.

With the positional query and transformation language Xcerpt the nodes to
be selected are specified by variables in patterns called query terms. Query pat-
terns are related to other patterns called construct terms through their common
variables. The Xcerpt construct relating a construct term to a query expression
consisting of AND and/or OR connected query terms is a rule. These concepts
are introduced in the next section.

For querying semistructured data, the positional approach has been suggested
first with UnQL [1] and XML-QL [11]. In common programming, the positional
approach finds its roots in Functional and Logic Programming. Arguably, both
query languages QBE and SQL can be seen as positional languages.

3 Xcerpt’s Main Constructs

An Xcerpt program may consist of at least one goal and of some (maybe zero)
rules. Goals and rules are built up from database, query and construct terms
that are first introduced. Note that besides the “abstract” syntax presented here,
Xcerpt also has an XML syntax which is not described here for space reasons.

3.1 Database, Query, and Construct Terms

Common to all terms is that they represent tree-like (or graph-like) structures.
Square brackets (i.e. [|) denote ordered term specification (as in standard XML),
i.e. the matching subterms in the database are required to be in the same order
as in the query term. Curly braces (i.e. { }) denote unordered term specification
(as is common in databases), i.e. the matching subterms in the database may be
in arbitrary order.

Single (square or curly) braces (i.e. [] and { }) are used to denote that a
matching term must contain matching subterms for all subterms of a term and
may not contain additional subterms (total term specification). Double braces
(i.e. [[]] and {{ }}) are used to denote that the database term may contain
additional subterms as long as matching partners for all subterms of the query
term are found (partial term specification).

Graph structure is expressed using a reference mechanism. The construct
id @ t is used as a defining occurrence of the identifier id and the construct
~id is used as a referring occurrence.

Database Terms are used to represent XML documents and the data items of
a semistructured database. They are similar to ground functional programming
expressions and logical atoms. Database terms may only contain the single square
and curly braces described above.

A database is a (multi-)set of database terms (e.g. the Web). Note, however,
that a single database term is often used to represent what is commonly referred
to as a “database”, as shown in the following example.

Ezample: a database term representing a bibliography consisting of several
books. Note the use of references to share common data. Also note that the
author list for a book is ordered while the data in general is unordered:

bib {
authors {
al @ author {
name { "Serge Abiteboul" }, publications { "bl, "b2 } 3},
a2 @ author {

name { "Peter Buneman" }, publications { "bl } ¥,
a3 @ author {
name { "Dan Suciu" }, publications { "bl } 3,

a4 @ author {

name { "Richard Hull" }, publications { "b2 } },
a5 @ author {
name { "Victor Vianu" }, publications { "b2 } b
},
bl @ book {

title { "Data on the Web" },
authors [~“al, "a2, ~a3],
price { "69.95" }
},
b2 @ book {
title { "Foundations of Databases" },
editors [~“al, ~a4, ~a5],
price { "29.00" }
}

Database terms induce a graph in a straightforward manner. Figure 1 shows a
(incomplete) graph representation of the book database of the previous example.

Fig. 1. Graph induced by the book database (incomplete). References to parts
not illustrated are shown as dashed arrows.

Note that database terms do not cover all constructs found in XML. Con-
structs like Attributes or Processing Instructions are intentionally left out be-
cause they are either easy to model in the existing database terms or do not add
important information to the data represented.

Query Terms are similar to non-ground functional programming expressions
and logical atoms. Extending the database terms, query terms have the following
properties:

— in a query term, partial specifications omitting subterms irrelevant to the
query are possible (indicated by double square brackets or curly braces),

— in a query term, it is possible to specify subterms at arbitrary depth (indi-
cated by the keyword desc).

— a query term may contain term variables and label variables to “select” data
from the database (variables are written in upper case letters below)

As Xcerpt queries are pattern-based, a query term should resemble the
database as closely as possible, while leaving out such parts that are irrelevant
to the query.

The reference mechanism using ~id and id @ t has the same significance
as the parent-child edge. In the following example, the right hand side shows a
query which matches a parent-child edge with a reference edge in the database.

Ezample: Left: Select title and author pairs for each book. Right: Select pairs of
authors that have written at least one book together.

bib {{ authors {{
author {{
var Author ~» name {{ }},
publications {{

bib {{
book {{
var T ~ title {{ }},
authors {{ var A }} book {4

}}}} authors {{ var CoAuthor ~» author {{ }} }}
3

3}

33

The Xcerpt construct X ~» ¢ (read “as”) serves to associate a query term
to a variable, so as to specify a restriction of its bindings. The Xcerpt construct
desc (read “descendant” — not illustrated above) is used to specify subterms at
arbitrary depth.

Query terms are unified with database or construct terms using a non-
standard unification called simulation unification, which has been investigated
in [12]. Simulation unification is based on graph simulation [13] which is similar
to graph homomorphisms.

The outcome of unifying a query term with a database term are bindings
for the variables in the query term. Applying these bindings to the query term
results in a ground query term which is simulated (in the sense of [13]) in the
database term.

Construct Terms serve to reassemble variable (the bindings of which are spec-
ified in query terms) so as to construct new database terms. They may only
contain single brackets and variables, but no partial specification or variable re-
strictions. The rationale of this is to keep variable specifications within query
terms, ensuring a strict separation of purposes between query and construct
terms.

Example: Create an Author-Title pair wrapped in a “result” element:

result {
var A, var T

}

In a construct term, the Xcerpt construct all ¢ serves to collect (in the con-
struct term) all instances of ¢ that can be generated by different variable bindings
for the variables in ¢ (returned by the associated query terms in which they oc-
cur). Likewise, some n t serves to collect at most n instances of ¢ that can be
generated in the same manner.

Ezxample: Create a list publications for each author and a list of authors for each

publication:
results { results {
result { result {
var A, all var A,
all var T var T
} }
} }

Ezample: The following construct term collects all title/author pairs for the
previous query:
results { all result { var A, var T } }

The constructs all and some n may be nested to form more complex results.
The following example shows the usefulness of nesting:

Ezxample: Assuming the previous query, the following construct term collects all

titles for each author:
results { all result { var A, all var T } }

Positioning the nested all around the A yields “all authors for each title” as a

result:
results { all result { all var A, var T } }

3.2 Queries

A query is a connection of zero or more query terms using the n-ary connectives
and and or. A query is always (implicitly or explicitly) associated with a resource.
A resource may be the program itself, an external Xcerpt program or an (XML
or other) document specified by a URI (uniform resource identifier).

Variables occurring in more than one query terms in an and connected query
evaluate similar to an equijoin in relational databases.

Ezample: Query for the prices of books in two different book stores (specified
by the resource identifier A and B).

and {
bib {{
book {{ var T ~» title{{ }}, var Pa ~» price{{ }} }}
}} in http://www.a.com,
reviews {{
entry {{ var T ~ title{{ }}, var Pb ~ price{{ }} }}
}} in http://www.b.com

If a query does not explicitly have an associated resource, the resource spec-
ification is implicit and inherited from the parent. If none of the parents have a
resource specification, or the query does not have a parent, the queried resource
is the program itself (i.e. the heads of the rules and possibly database terms
contained in the program — see “Rule Chaining” below).

Note that it is possible to use curly and square braces in and and or con-
nections to specify that the evaluation order is of importance or not. This may
serve as an indication to the evaluation engine whether certain optimizations are
applicable or not.

3.3 Construct-Query Rules, Goals

An Xcerpt program consists of zero or more construct-query rules, one or more
goals and zero or more database terms. Both rules and goals have the form

Construct Term «— Query Part

where a construct term is constructed depending on the evaluation of a query
part.

Ezample: A rule that creates a price summary for the books in the two databases
A and B:

rule {
cons {
summary {
all book { var T, price-at-A { var Pa }, price-at-B { var Pb } }
}
},
query {
and {
bib {{
book {{ var T ~» title{{ }}, price{{ var Pa }} }}
}} in A,
reviews {{
entry {{ var T ~ title{{ }}, price{{ var Pb }} }}
}} in B

A rule can be seen as a “view” specifying how t°-shaped documents can be
obtained by evaluating the query part against a Web resource (e.g. an XML
document or a database).

In addition to the form above, goals are always (explicitly or implicitly)
associated with an output resource. This resource specifies where to “write” the
resulting database terms. If not explicitly specified, the output resource defaults
to stdout, writing all output to the console.

Rule Chaining. In addition to querying external resources, a query may also
be evaluated against the program. In such a case, the heads of the program rules
(but not of the goals) are queried and the associated rule is evaluated. Both
forward and backward chaining are feasible.

Forward Chaining. In a forward chaining approach, rules are evaluated iter-
atively against the current set of database terms until saturation is achieved.
Forward Chaining is useful for instance for materializing views and for view
maintenance.

Backward Chaining. Backward Chaining is a goal driven approach. Beginning
with the query part of the goal, program rules are selected if they are relevant
for “proving” a query term. The query term in question is then replaced by the
query part of the selected rule. Backward Chaining is useful when the expected
result is small in comparison with the number of possible results of the program.

Backward Chaining in Xcerpt following the SLD resolution used in e.g. Pro-
log, with some major modifications to cover constructs like all and some and to
cope with multiple results of a simulation unification.

4 visXcerpt: A Visual Rendering of Xcerpt

The main goal of visual languages in general is to ease the use of a technology
especially among novice users since it avoids many common errors by abstract-
ing from the textual syntax. The Web context in particular demands for query
technology that is easy to use even by non-programmers, since there are always
queries not forseen by developers. Hence, a visual language would likely be well
accepted among many Web users.

For visual query languages it is considered to be important to have a strong
visual relationship between queries and queried data or query results. A natural
approach is to provide some sort of example of a valid result as query as first
presented in QBE. Xcerpt query patterns with positional variables can be seen
as samples of valid source data items, where some parts are left out and oth-
ers represented by variables. Construction patterns can be seen as samples or
templates of result data items.

The syntax and semantics of Xcerpt as a whole is well suited as foundation
for a visual language. As a consequence, textual Xcerpt’s visual counterpart
visXcerpt can be conceived as a mere rendering instead of a fully novel language.
This rendering might be seen as an advanced (because of the dynamic features)
layout.

In the following, it is illustrated how the textual Xcerpt constructs have their
visual counterparts in visXcerpt. A generic term representation is introduced
first, followed by the rule- and query constructs used to form Xcerpt programs
and by dynamic aspects of the visual representation.

4.1 Visual Representation of Terms

Xcerpt terms (i.e. elements) are visualised as
boxes. A term label (or tag) is attached as a
tab on the top of its associated box. visXcerpt
has features for handling attributes and text. At-
tributes are placed in a two-column table with
names in the left column and values in the right
column. The attribute table appears first in a box
and is omitted if there are no attributes. Direct
subterms (i.e. children) are visualised the same
way as sub- or child boxes. Child boxes are ar-
ranged vertically in a parent box. For better dis-
tinction, they are coloured differently. Figure 2 on
the right illustrates this nesting on the Xcerpt term
flla{"TextA”},b]" TextB”|, c[[” TextA”]]]].

Different box borders are used as visual coun-
terparts to the Xcerpt parentheses {{ }}, [[]|,
{ }, and []. Ordered or unordered children are
indicated graphically by an icon (ascending bars
represent ordered, random bars unordered) at the
top right corner of a box. Optionally, partial and
total matching can also be indicated graphically
by an icon (see also Figure 2 on the right).

Fig. 2. visXcerpt represen-
tation of a term using dif-
ferent combinations of or-
dered/unordered and par-
tial/total

Visual Identifiers and References. Beyond

)] reference to id1

B reference to id1

Fig. 3. identifiers appear
in the tab, references are vi-
sualised by icons

the hierarchical structure that terms can express,
Xcerpt provides a reference mechanism based on
IDs associated to terms (like id@t) and references
(like 1 id).

Figure 3 on the left illustrates the visual repre-
sentation of a database term containing references
and both ordered and unordered content. The ref-
erences are represented with an icon resembling
a pointer and referenced terms carry the anchor
name in the title tab.

Note that visXcerpt also provides navigational
support for references by representing those con-
structs as hyperlinks (see dynamic aspects below).

Visual Query and Construction Patterns.
The constructs presented so far are the foundation
of visXcerpt database terms. They can be used to
visualise any XML data as well as any Xcerpt data.
Visualisation of further Xcerpt constructs are irrel-
evant for pure data and are distinguished visually

from the former constructs — they use reserved colours (black, white and gray)
and in some cases textual adornment with a reserved text style (italic font).
Those textual extensions always match to the corresponding Xcerpt keywords.

— wvariables are represented as black boxes with the variable name writ-
ten in white in the box. If a variable is restricted to a term (by the
~> construct), this term appears within the box of the variable. The
variable A in Figure 4 illustrates this representation on the example
f[[desc var A -> a{{ }} 1]. The variable A is restricted to such terms
that match with desc a{{ }}.

— The desc (descendant) construct is rendered as gray box with strong bevelled
border (a visual metaphor for depth) and the keyword descendant is written
in italic at the top (see Figure 4).

— The constructs all, and and or are rendered as white boxes with black border
and textual adornment. To further distinguish disjunctions and conjunctions
the content of or is arranged horizontally while the content of and is arranged
vertically. A visual representation of all and and can be seen in Figure 5 (left
of the arrow).

4.2 visXcerpt Programs

Visual Construct-Query Rules and Goals.
are visualized in visXcerpt by connecting a query
part with a construct term by means of an arrow,
so as to emphasize the fact that in an Xcerpt rule
a result follows from a query. As can be seen in
Figure 5, the construct term is positioned left of
the arrow while the query part is positioned right
of the arrow.

Query and/or construct parts may contain re-
source specifications. Since a resource specification
has a scope, it is indicated as a box containing all
parts for which they are valid. The resource itself Fig.4. descendant as bev-
is specified in the title of this box (see Figure 5). elled box, variables as black

box with white text

Visual Programs are seen as documents of visXcerpt construct-query rules.
They are arranged vertically as a list of rules.

4.3 Dynamic Features

A static visualisation as described above is not sufficient for an interactive query
system that should provide features which enhance the usability and allow for
editing visXcerpt programs. The visXcerpt prototype provides features that al-
low for easier navigation and improved comprehension (browsing aspects). Fur-
thermore, an editor is provided as well as the possibility to “try out” programs
while developing them.

10

and

!Equery resource : http://vwww. A.com

price-at-A

all | =

price-al-Bl_

I

Fig.5. A visual representation of the Xcerpt rule from Section 3.3. The con-
struct term is left of the arrow while the query part — consisting of an and con-
nection of two query terms — is right of the arrow. Note that the Xcerpt-specific
constructs not found in database terms (e.g. variables) are always displayed in
shades of black and white.

11

Browsing Aspects. When viewing (and editing)
documents, an important aspect are properties
that allow navigation and different views upon the
data. In visXcerpt, such properties are referred to
as browsing aspects. In particular, visXcerpt pro-
vides means for:

Partial Viewing. For large documents, only a part
is displayed in the viewer. Vertical and horizontal
scrollbars allow to move the current view.

Information Hiding. In large documents, it is de-
sirable to be able to hide such information that is
irrelevant for the current task. In visXcerpt, click-
ing on the title tab of an element “folds” the ele-
ment together with all its contents such that only
the title tab remains (in a shaded color). Any sub-

@ Text A

Fig. 6. information hiding:
element “b” is folded

sequent element boxes below the same parent element move upwards such that
their title tab is besides the hidden elements (Illustrated in Figure 6 on the

right).

Fig. 7. wvariable highlight-
ing of the variable “A”

References. Visually depicting references with
icons and identifiers only (as described above) is
dissatisfactory, since it does not model the graph
structure appropriately. Instead of further depict-
ing references visually, visXcerpt “moves them into
hyperspace” by representing them as hyperlinks.
That is, by clicking on a reference the visualisation
scrolls or focuses on the occurence of the referenced
element. Hovering with the pointer above a term
with ID highlights all occurrences of references to
it. Backward navigation to references is supported
through a popup menu of elements containing an

ID.

Variable Highlighting. In (vis)Xcerpt rules, all
variables that appear in the head of a rule are also
required to appear in its body. Moreover, the same
variable may occur in several parts of the body,
even several times within the same query term. To

support the user in designing visXcerpt rules, all occurrences of a variable are
highlighted by inverting its color when the mouse hovers over one occurrence
of the variable (see Figure 7 on the left). This eases the comprehension of term
equality in positional queries and thus allows the user to recognize connections
between different parts of a rule or within a term.

12

The reference visualisation and variable handling is similar indeed and future
implementations of variable visualisation may rely on the more general reference
mechanism.

Editing Capabilities. As visXcerpt is an edi-
tor for tree structured data, many of the edit-
ing capabilities commonly found in plain text edi-

tors have only limited applicability. Thus, in addi-
tion to common text editing primitives (like “cut”,

“paste”), the visXcerpt editor provides primi-

tives that are suitable for insertion of subtrees c::ty

and nodes (e.g. “paste into at beginning/end” or paste before

“paste before/after”, illustrated in Figure 8 on the past i:ta:':;r::;inning)

I"ight). paste into (at end)
When build documents, the visXcerpt editor sests

follows a “copy and paste” paradigm with a tem- editl s

plate area where templates of common elements %:
like “element” or “variable” can be copied from :
and inserted into the edited document. A “drag
and drop” paradigm has also been considered but Fig.8. Editing capabili-
is not yet implemented due to technical reasons. ties: context menu

Interactive Queries. When designing programs,
it is often necessary to be able to run the program for test purposes as well as

restrict the test to certain parts of the program. The visXcerpt interface allows
both:

— A program can be evaluated at any time, provided its semantics is meaningful
(the visual interface ensures that the syntax is always correct). For a program
to be evaluated, it must contain at least one goal. Depending on the output
resource specified for the goal, the result of the evaluation is either displayed
in a new windows in the generic visXcerpt term representation or written to
the specified output resource.

— A single query term can be evaluated against the program to test only spe-
cific parts. This query term is evaluated against all rules and the result is
displayed as a disjunction of alternative variable bindings in a new window.

5 Related and Future Work

There is a large number of XML query languages available on the Web, most
of them based on a navigational selection of nodes. Most notably, the W3C
has issued the XQuery, XSLT and XPath recommendations [I4]. The pattern-
based approach to querying semistructured data has first been presented in the
language UnQL [1]. However, UnQL rules may not be connected by chaining and

13

lack many of the constructs found in Xcerpt. Several publications concerning the
language design and semantics of Xcerpt are available, in particular [5,15,12,16].

Visual XML query languages that the authors are aware of are XML-GL
[6], GraphLog [7], VXT [¢], BBQ [9] and Xing [10]. Most of these languages
visualize the XML document as a tree (i.e. nodes connected with arrows or
similar). While on first look this appears to be very concise, it does not scale
well to larger documents and queries. Thus, visXcerpt uses the concept of nested
boxes as visual representation, which is borrowed from the language Xing and
enhanced in many ways in the visXcerpt viewer/editor.

Work on Xcerpt is currently conducted to formally provide a model-theoretic
semantics (see [10]) and a reasoning calculus. Future work will investigate Xcerpt
as a reasoning language in a Web environment and add additional language
features like arithmetics, basic and complex types, constraints, etc.

The visXcerpt prototype will be extended by adding improved browsing facili-
ties, like browsing from an element to such elements that refer to it. Furthermore,
investigating suitable commands for editing tree- and graph-structured data is
of major interest. As the current visXcerpt editor is implemented prototypically
in HTML and JavaScript, a more efficient implementation is also sought for,
possibly by extending already-existing XML editors.

References

1. W3 Consortium http://www.w3.org/TR/REC-xml: Extensible Markup Language
(XML) 1.0, Second Edition. (2000)

2. W3 Consortium http://www.w3.org/TR/owl-ref/: OWL Web Ontology Language
Reference. (2003) W3C Working Draft, 31 March 2003.

3. Bry, F., Kraus, M.: Position Paper: Style Sheets for Context Adaptation. In: W3C
Delivery Context Workshop. (2002)

4. Buneman, P., Fernandez, M., Suciu, D.: UnQL: A Query Language and Algebra
for Semistructured Data Based on Structural Recursion. VLDB Journal 9 (2000)

5. Bry, F., Schaffert, S.: A Gentle Introduction into Xcerpt, a Rule-based Query
and Transformation Language for XML. In: Proc. Int. Workshop on Rule Markup
Languages for Business Rules on the Semantic Web. (2002) (invited article).

6. Ceri, S., Damiani, E., Fraternali, P., Paraboschi, S., Tanca, L..: XML-GL: A Graphi-
cal Language for Querying and Restructuring XML Documents. In: Sistemi Evoluti
per Basi di Dati. (1999)

7. Consens, M., Mendelzon, A.: Expressing Structural Hypertext Queries in
GraphLog. In: Second ACM Hypertext Conf. (1989) 269-292

8. Pietriga, E., Quint, V., Vion-Dury, J.Y.: VXT: A Visual Approach to XML Trans-
formations. In: ACM Symp. on Document Engineering. (2001)

9. Munroe, K.D., Papakonstantinou, Y.: BBQ: A Visual Interface for Integrated
Browsing and Querying of XML. In: VDB. (2000)

10. Erwig, M.: A Visual Language for XML. In: IEEE Symp. on Visual Languages.
(2000) 47-54

11. Deutsch, A., Fernandez, M., Florescu, D., Levy, A., Suciu, D.: A Query Language
for XML. In: Proc. of Eighth Int. WWW Conf. (1999)

14

12.

13.

14.

15.

16.

Bry, F., Schaffert, S.: Towards a Declarative Query and Transformation Language
for XML and Semistructured Data: Simulation Unification. In: Proc. Int. Conf. on
Logic Programming (ICLP). LNCS 2401, Springer-Verlag (2002)

Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. From Relations to
Semistructured Data and XML. Morgan Kaufmann (2000)

World Wide Web Consortium (W3C) http://www.w3.org/. (2002)

Bry, F., Schaffert, S.: The XML Query Language Xcerpt: Design Principles, Ex-
amples, and Semantics. In: Proc. 2nd Int. Workshop ”Web and Databases”. LNCS
2593, Erfurt, Germany, Springer-Verlag (2002)

Bry, F., Schaffert, S.: An Entailment for Reasoning on the Web. Technical Report
PMS-FB-2003-5, Institute for Computer Science, University of Munich (2003)

15

