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Abstract. In this paper we present a novel method for computing phase-
congruency by automatically selecting the range of scales over which a locally
one-dimensional feature exists. Our method is based on the use of local energy
computed in a multi-resolution steerable filter framework. We observe the
behaviour of phase over scale to determine both the type of the underlying
features and the optimal range of scales over which they exist. This additional
information can be used to provide a more complete description of image-features
which can be utilized in a variety of applications that require high-quality
low-level descriptors. We apply our algorithm to both synthetic and real images.
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1 Introduction

Phase congruency [7] is a very appealing concept for general feature detection because
it permits feature detection independent of the actual feature type, i.e. rather than being
optimized to detect edges or ridges or valleys it can be used to detect almost any type
of feature in a unified framework. The underlying principle is that phase is constant or
congruent over all scales at the location of what the human visual system would perceive
as a locally one-dimensional feature, such as an edge, a ridge or a valley (as opposed
to two-dimensional features, e.g. junctions) [6]. An advantage of phase-congruency is
that the type of feature can be classified using the phase-value at which congruency
occurs. Furthermore, the degree to which phases are congruent can readily be computed
as a ratio of some ‘ideal’ value and the actual phase-values leading to a measure that is
contrast and brightness independent. There are interesting parallels between the concept
of phase-congruency and Lindeberg’s [5] concept of the scale-space edge, which is
defined as a connected set of points in scale-space: features are found where a certain
measure persists over a consecutive range of scales. The method presented in this paper
identifies locations in image signals at which phase takes on a small set of fixed values
over a range of subsequent scales.

The use of phase is particularly appealing for a number of reasons: it has been
demonstrated experimentally [8] that most of the information in a signal is stored in the
phase, rather than the amplitude: the phase effectively encodes the ‘location’ at which
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the individual sinusoid contribute to the overall signal. Furthermore, phase is stable not
only under translation but also geometric deformations and contrast variations [1].

One of the great advantages of the use of phase is that the exact position of a feature
can be determined easily to sub-pixel accuracy [3] without the need for explicit sub-pixel
feature detection.

Morrone and Owens [7] show that for a one-dimensional signal I(x) which has the
short-term Fourier Transform expansion:

I(x) =
∑

n>0

An cos(nωx + φn) =
∑

n>0

An cos(φn(x)) (1)

where An, φn are respectively the nth components of amplitude and phase at position
x, all phase-components φn(x) are (near) identical at the location x of a feature.

Phase congruency can be shown to be directly related to local energy [10] which in
the one-dimensional case is defined as

LE1D =
√

I2 + H2 (2)

where I is the input signal and H its Hilbert transform.
In practice, phase-congruency is obtained by computing local energy at a number

of scales and integrating the resulting coefficients appropriately. Kovesi [4] presents the
first such computationally efficient implementation of phase-congruency. He defines a
phase congruency measure PC(x) at signal location x as:

PC(x) = max
φ

∑
n>0 An cos(φn(x) − φ(x))∑

n>0 An
=

LE∑
n>0 An

(3)

The value of φ(x) that maximizes (3) is the amplitude weighted mean local phase-
angle. It can be shown that the numerator LE in the above expression is the local energy
of the signal [10]; PC is consequently the (local) maximum of the amplitude-weighted
sum of the phases (computed over a range of scales) normalized by the amplitude sum.
Kovesi extends the concept to two dimensional signals and addresses issues such as noise
or advanced phase-congruency based operators for symmetry and asymmetry. Although
PC gives good results for a wide range of synthetic and natural images and produces
feature maps that compare favourably with e.g. a Canny edge detector [4], there are a
number of drawbacks which are related to one major oversight: the fact that local energy
is proportional to phase-congruency (see (3)) is only valid for isolated features and is no
longer valid as soon as the spatial extent of the filter used overlaps neighbouring features
in the input signal. This is illustrated in Fig. 1 which shows in (A) a signal consisting
of a square wave with decreasing frequency (from left to right). Subfigure (B) is the
energy amplitude scaleogram (computed using (2) over a range of centre frequencies
λ = 0.1 : 0.65.) The corresponding phaseogram is shown in Subfig. (C). A number of
observations are immediately obvious:

– The range of scales over which edges have significant energy is much larger than
the rather small range of scales over which ridges and valleys respond.
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Fig. 1. Locality of energy response: the energy distribution over scale depends not only on the
underlying feature, but also its neighbourhood. See text for details.

– There is interference as filters overlap neighbouring features leading to the cancel-
lation of responses which in (B) correspond to the ‘black holes’ along the centre of
the scaleogram (or alternatively, the regions in (C) where two columns of constant
phase merge). In these regions phase is unstable and must not be used for further
processing [3].

– A second form of interference occurs towards the low-frequencies (small λ): re-
sponses due to combinations (rather than isolated) of neighbouring features add up
to high energy amplitudes as shown by the broad high intensity curve in the scale-
ogram. The response is high even in between what we would regard as a feature and
therefore must be excluded from further processing.

Since PC is computed over all scales, rather than the appropriate range of scales and
– as illustrated above – strong features (edges) dominate neighbourhoods, PC responds
predominantly to edges and isolated very thin lines and produces spurious responses in
areas with high energy which is due to interference of low-frequency responses. This is
illustrated in Fig. 2 and Fig. 3. The left of Fig. 2 shows a synthetic image with a variety
of structures including ridges, valleys and edges over a wide range of orientations, scales
and with different amounts of smoothing.

The raw PC output is shown on the right in Fig. 2. There are high responses near
most of the edges apart from the rather smooth edges in the lower left quadrant. The
responses at the edges are also significantly stronger than those corresponding to the
ridges and valleys in between these edges. As a result, the post-processed version shown
in Fig. 3 marks as interesting features only edges and is rather unsuccessful at identifying
the smoothed features in the lower left quadrant. The method proposed in this paper
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Fig. 2. Left: Synthetic signal with variety of locally one-dimensional features (edges, ridges,
valleys). Right: corresponding PC map. Note the strong responses at edges, almost uniform
response in bottom-left quadrant and weak responses at ridges/valleys.

identifies a wider range of geometric features than just edges and provides a better
response to heavily smoothed features, as in the lower left quadrant of the image, thus
taking advantage of local energy’s inherent ability to respond to any type of locally
one-dimensional feature equally well.

2 Methodology

Our approach is based on the use of local energy for feature detection. At each location
in the image, we compute an energy response, which can be used to obtain an energy-
amplitude and a phase-angle φ. Since we are interested in the energy response and
phase-angle at each image feature independent of its orientation, we interpolate the
exact response at the orientation θl of each image-point through the use of steerable
filters [2]. We define θl to be perpendicular to the locally one-dimensional feature, i.e.
along the orientation of maximum variation. Only regions of the image with high local
energy will be selected for further processing. Since the post-processing stages involve
tracking phase φ over multiple scales, the signal is decomposed at multiple resolutions.

2.1 Decomposition and Orientation Computation

Local energy is computed using quadrature pairs of odd-symmetric and even-symmetric
bandpass filters. We decompose the image using a steerable filter bank at No = 4
odd-symmetric and Ne = 5 even-symmetric orientations θo and θe distributed evenly
over the half-circle of orientations 0..π (i.e. θo = π

4 [0, 1, 2, 3] and θe = π
5 [0, . . . , 4]) and

S = 15 closely spaced scales (spacing of 0.2 octaves for filters with 1-octave bandwidth)
in order to approximate a continuous decomposition (in scale). In the following, where
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Fig. 3. Left: PC map after postprocessing (non-maximum suppression and hysteresis threshold-
ing). Note the noisy response in bottom left quadrant. Furthermore, only edges are detected. Right:
LE: Ridge (black) and valley (white) feature points overlaid onto original image. See text for more
details

appropriate, the scale index s is omitted to improve legibility. The polar-separable filters
are constructed in the Fourier domain with a cosine raised to the power 2 on a log-scale as
the radial component and a quadrature pair of filters for the angular component which has
a cos3 and | cos3 | cross-section for the odd/even-symmetric filter-parts respectively [9].

The image is convolved with the resulting filterbank by multiplying the Fourier
Transform of the image with the individual filters and inverse Fourier transforming. The
resulting subbands are kept at full resolution, i.e. no pyramid scheme is used, which
facilitates the tracking of phase through scale. The 2D extension of (2) is

LEn =
√

O2
n + E2

n (4)

where On, En are the nth odd/even-symmetric responses for each of the No orientations.
Since No �= Ne and the odd-symmetric and even-symmetric filters consequently are not
aligned, they need to be aligned prior to computing LE. This is achieved by steering the
even-symmetric filters to the orientations θo.

Orientation Computation. At each point and for every scale local orientation θl is
found as

θl =
1
2

arctan(imag(V̄ )/real(V̄ )) (5)

where V̄ =
∑No−1

n=0 exp(i2nπ/No)|LEn| is the amplitude weighted sum of oriented
unit length vectors aligned with θo.

At each point and scale S, the No subband coefficients are steered to θl. The result
of this operation is a cuboid of S steered energy response-maps.
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2.2 Tracking Phase over Scale

The basic idea for determining the correct range of scales over which to compute phase-
congruency is to track the precise, i.e. sub-pixel contours of phase over scale and to label
a location in the image as ‘interesting’ if phase is congruent over a minimum number of
scales. The candidate points are obtained using the Matlab function contourc on each
response map of the cuboid using the appropriate phase-angles for positive/negative
edges and ridges and valleys.

In order to avoid having to exhaustively search the entire image, we use hysteresis
thresholding of local energy amplitude to reduce the number of candidate points.

For each of the (equally spaced along a phase-contour) candidate points p, we iterate
through all scales λ. If p has correspondences with the same phase-value in a minimum
number lmin of subsequent scales, then p is marked as a feature point for that particular
phase-value. The start and end-scales λb and λe of where phase is congruent are recorded.
All points in the chain from λb to λe are removed from the set of candidate points, i.e.
they will not be considered at subsequent stages. Correspondence is established if the
contours at subsequent scales are no further apart (measured as the distance between
two parallel contours) than a specified fraction dmax of pixels. The subpixel location of
p is recorded as the mean of all points in the chain.

Through extensive experimentation on a large set of images we found that the values
dmax=0.3 pixels and lmin=4 scales give excellent results for a wide range of images.
The choice of dmax is not critical, values between 0.2 ≤ dmax ≤ 0.5 give acceptable
results. The choice of lmin directly affects
1) the sensitivity to the degree of smoothing a feature has undergone: strong smoothing
leads to responses with a small frequency spread, i.e. there are only significant responses
over a (very) small range of scales. Values of lmin � 4 therefore eliminate strongly
smoothed features and favour sharp transitions. Since edges exist over a wider range of
scales than lines, too large a value for lmin would therefore favour edges over lines.
2) How features in closely packed neighbourhoods are treated: as the filter-size increases,
the filters quickly start to overlap multiple features, leading to interference in responses.
As a result, stability in phase over scale is only guaranteed over a small range of scales.
If lmin is too large, regions with densely packed features are eliminated. Note that
lmin=4 is a value we obtained empirically for a decomposition over S=15 scales with a
corresponding step-size of 0.2 octaves. lmin=4 therefore implies that a feature needs to
exist over just under one octave.

The method is stable with respect to the thresholds, small changes lead to gradual
changes in the output, rather than catastrophic failure.

3 Results

The methods described in the previous sections were applied to a number of synthetic and
real images with varying noise and contrast levels and different densities of features. The
results of LE are displayed as follows: since the location of the feature-point is computed
at subpixel accuracy, the resulting points are displayed as short lines perpendicular to
θl, i.e. parallel to the orientation of the locally one-dimensional feature.
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Fig. 4. Top: Fingerprint. Bottom: Writing on floor. See text for details

The right of Fig. 3 shows the ridges and valleys found in the synthetic signal of Fig. 2
overlaid in black and white respectively. For clarity the edges were not marked. Note
that we have found and marked a range of features which were completely missed by
PC as shown on the left in Fig. 3. In particular, we have found the relevant ridges and
valleys independently of their actual width not only in the regions with sharp transitions,
but also in the smoothed region of the image. It is clear that broad ridges and valleys
towards the edge of the image are not marked, this is due to the fact that the filters used
were not large enough to respond to features of this size. As expected, the edges of these
features are detected however. This example also illustrates one of the problems of the
method: very fine lines or edges in neighbourhoods with closely spaced features are not
detected reliably as shown e.g. in the centre of the image. At these locations, phase is
only valid over a very limited range of scales, due to interference from neighbouring
features. This is however a property of phase-congruency per se, rather than the fault of
LE.

In the two images at the top of Fig. 4 the ridges found in an image of a fingerprint
are highlighted. The left image shows the output of the LE method (for clarity, the
edges and valleys were not marked). Despite the noise-levels and variation in width,
the exact centres of the ridges have been marked correctly. This means, not only can
we detect the ridges, but we can also describe it in terms of width, orientation etc. The
right image shows the output of PC. As with the other examples, the edges dominate
most other features. Additionally, because the features are relatively closely spaced,
there is significant interference between neighbouring features, leading to a high level
of spurious, noisy responses.
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The two images at the bottom of Fig. 4 shows the image of a piece of writing on a
floor. Note how the width of the letters gets narrower towards the top of the image (rear
of the scene). On the left we see the result of LE. Despite this considerable variation in
width of the lines, all letters were detected correctly. Note however, that the faint lines on
the floor have not been marked. This is due to the use of the global hysteresis thresholds
[0.15, 0.30] of the maximum energy amplitude. Since local energy is computed at a local
level as the name implies, a future improvement would be to use hysteresis thresholding
based on a local rather than a global threshold. The image on the right shows the output
of hysteresis thresholded PC. Once again, where lines are broad enough to have distinct
edges, the edges dominate the broad lines.

4 Discussion and Conclusions

We have introduced a novel method LE for computing phase-congruency over the ap-
propriate range of scales, rather than averaging over all scales. The features obtained
using LE are a great improvement over existing phase-congruency implementations and
a further step towards a truly general feature detector.

The correct range of scales can be used to further describe a feature and the position
of a feature is computed to subpixel precision. We have demonstrated the usefulness of
the new method using both synthetic as well as real images.
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