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Abstract. In texture segmentation it is key to develop descriptors which
provide acceptable results without a significant increment of their tempo-
ral complexity. In this contribution, we propose two probabilistic texture
descriptors: polarity and texture contrast. These descriptors are related
to the entropy of both the local distributions of gradient orientation and
magnitude. As such descriptors are scale-dependent, we propose a simple
method for selecting the optimal scale. Using the features at their opti-
mal scale, we test the performance of these measures with an adaptive
version of the ACM clustering method, in which adaptation relies on the
Kolmogorov-Smirnov test. Our results with only these two descriptors
are very promising.

1 Introduction

In the past, there have been many approaches to texture description: Gabor
filters [6], quadrature filters [7], co-occurrence matrices [§], wavelets [9], second-
order eigenstructure [10], and so on. As texture is not a pointwise feature but
relies on a local neighborhood, there are two key problems to consider: (i) Find
a good descriptor, like the ones listed above, and (ii) determine the optimal size
of the neighborhood where such a descriptor is computed. In this paper, we ad-
dress these two questions starting by revising two measures, polarity and texture
contrast, which rely on the second-order eigenstructure. Later, we redefine such
measures in terms of entropy and propose a way of automatically selecting the
optimal scale of the measures. Finally, we test these measures in segmentation.

The polarity P, at a given pixel is defined in [I] as a measure of the extent
to which the gradient vectors VI in a certain neighborhood defined by the scale
o all point in the same direction:

\Ey —E_|
P,=—, 1
E.+E_ S
where E and E_ are defined as follows
By =) Gola,y)[VI-nl; (2)
zy

and
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E_ = Go(z,y)[VI-n]_, (3)
@y
where G, (.) is a Gaussian smoothing kernel with variance o2, [.]; and [.]_ are

the rectified positive and negative parts of their arguments, and 7 is a unit vector
perpendicular to ¢, the dominant direction in the neighborhood, which in turn
is the argument of the principal eigenvector of the second-moment matrix

Mo’ - ZGU(J),y)(VI)(VI)T . (4)

z,Y

Consequently, £ and E_ measure, respectively, how many gradient vectors in
the window defined by G, (.) are in the positive side and negative side of ¢, and
P, € [0,1], will be close to zero when E, ~ E_, that is, when we have a flow
pattern; and it will be close to the unit for instance when E_ ~ 0 and E, # 0,
that is, when we have an edge.

2 Entropy-Related Measures

2.1 Probabilistic Polarity

As the underlying idea of polarity is to vanish as many different orientations ap-
pear in the neighborhood, we propose an alternative definition of polarity which
does not rely on the eigenstructure of the local gradient, but on the structure of
the distribution of local gradient orientations. Thus, the probability p,(z) of a
given orientation z € [0, 27) at scale o is defined by

XL, 80— 0, y)W e, y)
T, 5w — 0@, )W (z,y)}

Po(2) (5)
where
W(Ivy) = Ga(zyy)HVIH 70(1'7y) = a’rCtanIy/Ix I

that is, the weight of a given pixel in the neighborhood and the local orientation
of its gradient, respectively. After quantizing the interval [0, 27) into N bins of
size A = 2w /N, we define the empirical probability h,(k), with k = 0,1,..., N—
1, which accumulates all probabilities p,(z) € [kA, (k + 1)A). Using the latter
N —component histogram, the entropy of the distribution is approximated by

N-1

Hy =Y he(k)log ho (k). (6)
k=0

In principle, the inverse entropy 1 — H, is a good measure of polarity because
it tends to the unit when all gradient vectors in the neighborhood have a sim-
ilar orientation (minimal entropy, corresponding to a peaked distribution) and
it vanishes when many different orientations appear (maximal entropy, corre-
sponding to a uniform distribution). However, the inverse entropy decays too
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Fig.1. (a) Input image (b) Zoom showing both a polarized and a de-polarized zone
(c) Histogram of the polarized zone: 1 — H, = 0.2568, P, = 0.2568 (d) Histogram of
the de-polarized zone: 1 — H, = 0.3722, P, = 0.0079

slowly as the neighborhood is de-polarized. Particularly, a distribution with two
closer peaks (or one wider peak) and one with the same peaks but distant, have
similar entropies. Consequenly, the latter measure captures the number of peaks
but not their separation, and such a separation, in addition to the appearance of
new peaks, occurs when we progressively de-polarize a texture edge while incre-
menting the size of its neighborhood. For instance, Fig. Ml polarity vanishes when
two significan peaks appear in a de-polarized zone, whereas inverse entropy even
gets incremented in the same zone.

In order to capture peak separation we re-define polarity in terms of the
expression

N-1 L(N-1)/2]
Po=1-3 ho(k) Y g)he(lk+rln) . (7)
k=0 r=—|N/2]

where each component h, (k) is no longer weighted by its logarithm but by the
result of convolving it with a kernel g(.) defined in such a way that we ensure
that P, € [0, 1]. For a linear choice we have that
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n
g(r) =ar = I(N—D/2 .- (8)
ZZL(:—LJiT)//;JJ d

We also assume a cyclic histogram, because the orientation domain is also cyclic,
where [k +r|y € {0,1,..., N — 1} refers to (k + r)mod N.

2.2 Probabilistic Texture Contrast

Another texture feature is texture contrast. In [I] it is defined by 2v/A; + Ag,
where A\; and Ay are the two eigenvalues of the second-moment matrix M, . Fol-
lowing the probabilistic rationale above, and in order to define texture contrast
we consider the local intensity probabilities

(Z) = Zx,y 5(2 - I(x,y))GJ(l',y)
1 B Zw{Zz,y 5(w_'[($7y)>GU(‘T’y)} 7

and proceed to quantize the normalized range of intensities [0, 1] yielding the
M —component histogram ¢, (i), ¢ = 0,1,...,M — 1, which accumulates the
probabilities ¢, (z). Texture contrast must be close to the unit when we have
two peaks at maximal distance, must vanish when the intensity distribution is
peaked. Again, we find that the entropy is not a proper choice and we replace it
by

9)

M-—1 M-—1
Co= Y (i) Y dlli— ieals) | (10)
i=0 =0

where d(.) is defined in such a way that C, € [0, 1]. For the simple linear case,
we have that d(r) = 2r/(N — 1). With the latter definition we consider peak
separation through a weighted correlation.

3 Scale Selection

As the probabilistic measures defined above depend on the scale, we are in-
terested in a method for selecting them optimal scale for both of them. Few
previous work has been done in this area [2]. However we follow the approach
described in [T] and scale selection relies on polarity analysis. We will consider a
sequence of scales {0y}, with k = 0,1,2,...,5 and we will start by computing
the polarity at the lower scale P,, and assuming that the tentative optimal scale
is 0g. Thereafter, we will test whether an increment of scale is acceptable.

An increment of scale will always contribute either to de-polarize the pixel,
or to leave its polarity unchanged. Consequently, given P, , and assuming that
the temporary optimal scale is oy, we compute P, ., and test whether the
decrement P,, — P,, , = VP, < 01is low enough. If VP, <VvVPs , with
v € [0,1] then we will accept o141 as a new temporary optimal scale because
such scale de-polarizes the pixel significantly. Otherwise, we will assume that
the optimal scale o* = o. The coeffiect ¥ modulates the decrement needed to
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(b) ()
() ()

Fig. 2. Polarity at different scales. (a) o = 0.25 (b) 0 = 0.5 (¢) o0 = 1.0 (d) o = 2.0 (e)
o=4.0 (f) c =8.0

increment the scale: When v — 0 we will change easily of scale, whereas with
v — 1 we will be more restrictive.

In our experiments we have the set of scales {0.25,0.5,1.0,2.0,4.0,8.0} and
we have set v = 0.5, that is, we set S = 6. In Fig. @, we show the polarity
at those scales, and in Fig. [3] we show some results of optimal scale selection:
Optimal-scale image, with dark greys corresponding to low scales and light greys
corresponding to high scales, polarity image at the optimal scale (each pixel with
its optimal polarity P, ), and texture-contrast image at the optimal scale (each
pixel with its optimal texture contrast P,«). Low polarity appears in light grey
and high polarity appears in dark grey. On the other hand, low texture contrast
appears in dark grey and high contrast appears in light grey.

4 Adaptive Segmentation

4.1 EM Algorithm for Asymetric Clustering

Given N image blocks x1, . .., zy, each one having associated M possible features
Y1,---,Ym, the Asymetric Clustering Model (ACM) maximizes the log-likelihood

L(I,q) ==Y > LaKL(pji,gjja) » (11)

i=1 a=1

where: pj|; encodes the individual histogram, that is, the empirical probability of
observing each feature y; given x;; q;j|, is the prototypical histogram associated
to one of the K classes ¢,; K L(.,.) is the symmetric Kullback-Leibler divergence;
and I;, € {0,1} are class-membership variables.



142 M.A. Lozano and F. Escolano

(d)

Fig. 3. Texture features. (a) Optimal-scale image (b) Hue component (c) P,+ image
(d) Co+ image

The following EM algorithm was proposed in [3][5]. The E-step consists of
estimating the expected membership variables I;, € [0,1] given the current
estimation of the prototypical histogram ¢;,:

P exp{—KL(p;ji» Gija)/T}
yZa— = )
25:1 ptﬂ exp{—K L(pj|i, Gi18)/T}

= (12)

where
1 N
pa N ;:1: o

that is, the probability of assigning any block x; to class ¢, at iteration ¢,
and T the temperature, a control parameter which is reduced at each iteration.

In the M-step, given the expected membership variables I f;r 1 the prototyp-
ical histograms are re-estimated as follows:

Tt
Iia

=N
Zk:l Ilf:a

N
~t+1 _
qj|a - § TiaPjli 7Where T =
i=1

; (13)
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Fig. 4. Segmentation results. Top: Input images; Middle: Only texture features; Bot-
tom: Including color features.

that is, the prototype consists of the linear combination of all individuals p;;
weighted by the ;.

In a previous work we have introduced an adaptation mechanism for ACM
H] where we start with a high number of classes and class-fusion relies on con-
sidering whether the dispersion of the resulting class is lower than the sum of the
dispersion of the two fusing classes. Herein we propose a method relying on the
Kolmogorov-Smirnov test. As in our early work, we assume that the iterative
process is divided in epochs, and our adaptation mechanism consists of starting
by a high number of classes K4, and then reducing such a number, if proceeds,
at the end of each epoch. At that moment we consider all the K(K — 1)/2 pairs
of prototypes, where K is the current number of classes. For all these pairs we
compute the Kolmogorov-Smirnov statistic with a = 0.05, resulting from com-
paring their histograms, and then we select the pair ¢;|, and ¢;|g with the lower
statistic. If with such a statistic, the test does not succeed (both histograms are
not different enough) we decide to fuse their classes.

Then, we compute the fused prototype ¢;, by applying Equation and
considering that I, = ;o + I;5, that is

N
Iy = Zﬁivpj\i : (14)
i=1

And then a new epoch starts, and proceeds until convergence is declared.
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4.2 Segmentation Results

Dividing our input color images in blocks of 8 x 8 pixels, we consider a histogram
of 16 components both for polarity, texture contrast and hue component, and
thus number of features is 32 when only texture is considered, and 48 when color
is included. In Fig. 4] we compare the segmentation results obtained with and
without color information, and assuming K., = 10. In many cases texture fea-
tures are enough for yielding acceptable segmentations, although color features
usually improve the quality of the results.

5 Conclusion

In this paper we have proposed two entropy-related texture features, obtained
through automatic scale selection. In order to demonstrate their utility in seg-
mentation we have used them in an adaptive version of the ACM clustering
model, and the obtained results were promising.
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