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Abstract. The principal steps of a new method to solve the problem of surface 

reconstruction from parallel cross sections are presented in this paper. This 

method constitutes the extension of one previously proposed by the authors us-

ing the skeleton to solve the investigation problem. The method guarantees the 

correct topology of the surface without altering the original contours. Some re-

sults are shown that illustrate the excellent performance of the method in par-

ticular difficult cases not solved previously. All the cases analyzed are manipu-

lated in the same way. In real cases, the global time complexity improves the 

quadratic time of the quickest consulted methods. 

1 Introduction 

The problem of reconstructing the surface of a solid object from a series of parallel 

planar cross sections has been treated by the specialized literature in the last three 

decades [3,5,8,9,14]. A cross-section is formed by a set of closed contours defining 

the boundary of the material of interest to be reconstructed. As a distance separates 

the sections, information is often lost of the places where the ramifications occur in 

the surface of interest. This causes a shape difference and a different number of con-

tours in adjacent sections (Fig. 1). A way to approach this problem is creating inter-

mediate sections representing the place where the ramifications occur [8-10]. 

In this work, two verification criteria are taken into account. These criteria have 

been used by many authors (e.g. [1,3,9,10,14]): 1) The proposed solution should ob-

tain a topologically correct surface (in general, closed and not intercepted with itself) 

and 2) A resample of the same surface, in the place occupied by the original sections, 

should produce the original data. 

The authors of the present work previously proposed a new method [10] to solve 

the branching problem. The method is based on the skeletonization technique to cre-

ate new contours, corresponding to an artificial intermediate slice that models the 

level where branching occurs. This method makes a successful treatment of several 

ramifications cases without violating the verification criteria. However, it neither 

deals with the cases of local protuberances not present in the adjacent section (Fig. 1a) 
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nor the cases of multiple ramification where more than a contour of a section should 

connect with more than a contour of the adjacent section (Fig. 1b). 

Only few of the consulted works ([1,8]) solve the “many to many” ramification 

case (Fig. 1b) and none has reported the solution to the case in which surface portions 

twist (Fig. 1c). 

 

Fig. 1. Top view of several difficult cases 

In this work a new method constituting an extension of [10] is proposed to offer an 

efficient and automatic solution to the investigation problem. The method reconstructs 

a topologically correct surface without modifying the data of the original sections. 

Below, in Section 2, the main steps of the method are described. Their complexity 

is analyzed in Section 3. Finally, in Section 4, some results are shown in different 

complicated examples. 

2 Proposed Method 

For each original section,  the initial data are a set  of closed contours that  define  the 

boundary of the material of interest to be reconstructed. The proposed method con-

sists of applying five steps to each pair of adjacent sections. The pseudocode of the 

main subroutine would be: 

SUBROUTINE Reconstruction of model 

 FOR EACH section S
i
 of model 

  Detect correspondences between S
i 
and S

i+1
 

  FOR EACH corresponding contours set 

   Construct skeleton image 

   Obtain skeleton graph 

   Form ribbons 

   Tile ribbons 

  END FOR EACH 

 END FOR EACH 

END SUBROUTINE 

The first step determines the correspondences existing among the contours of the 

sections analyzed. In this work, an overlapping method was used. This method estab-

lishes that two contours should be connected by a surface if the projections of the ma-

terial of interest they wrap up overlap to a certain threshold. All the projections are 

made on a plane parallel to the original sections (usually the XY). The following steps 

are explained below and, by way of example, their results are shown in Fig. 2. 
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2.1 Skeleton Image Construction 

The second step uses the same projection information than the previous step to build 

an image I representing the area that separates the material of interest of the analyzed 

contours (Fig. 2b). Then a thinning algorithm is applied, similar to the one used in [6], 

to obtain the skeleton E(I) (shown as thick lines in Fig. 2c). Optionally, the short hair 

can be eliminated (Fig. 2d). For more details concerning this step, [10] should be con-

sulted. The skeleton built in this way offers very valuable information to reconstruct 

in a correct and quick way the surface that connects the corresponding contours [12]. 

 

Fig. 2. Steps of the proposed method 

2.2 Skeleton Graph Obtaining 

Each black pixel of the skeleton image E(I), built in the previous section, is included 

in the skeleton graph G. Structurally, G is formed by a list of nodes or extreme verti-

ces VE (thick dots in Fig. 2d) and a list of arcs or rails L (lines in Fig. 2d). Each node 

VE contains its coordinates (x, y) and an ordered circular list of its connections N. 

Each connection N contains a rail L and the pixel of L to which VE is connected, 

called neighboring vertex VV. For convenience, the order of the connections follows 

the distribution of the neighboring vertices VV counterclockwise around VE. Each rail 

of G contains two extreme vertices and a list of the intermediate pixels that form the 

rail. 

2.3 Formation and Fusion of Ribbons 

In this step, the close relationship that exists between the image and its skeleton is 

used to simplify the final tiling, dividing the area to be reconstructed into parts called 

ribbons (Fig. 2e). Each ribbon is composed by a rail L of G and a portion PC of one 

of the contours analyzed. L and PC are near and bear similar shape so that there is no 

other rail or contour portion inside the ribbon conformed. The foundation of this de-

composition is discussed in [12]. 

As a result of the previous steps, the rails L and extreme vertices VE of G are avail-

able. To form the ribbons we need to determine the portions PC of the original con-

tours. During the reconstruction process, the endpoints of each contour portion should 
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be linked so that the union of the contour portions associated with each rail of the 

skeleton produces the original contours (Fig. 2e). Hence, in the union, these extreme 

vertices of portions are the only repeated points. In this way, the surface reconstruc-

tion between two adjacent sections is reduced to the union of all the ribbon recon-

struction. The pseudo-code of an algorithm that guarantees the correct and quick se-

lection of the contour portions to form the ribbons is presented below. 

 

SUBROUTINE Form ribbons 

 (a) Initialize contours and extreme vertices connections as 
unmarked 

 FOR EACH branch vertex VE
i
 

  FOR EACH connection N
j
 of VE

i
 

   IF N
j
 IS unmarked 

    (b) Find unmarked contour C and the nearest vertex V
ini
 

that would be connected to VE
i
 between N

j
 and N

j+1
 

    (c) Choose connection N
ini
 that follows the direction of 

contour C FROM V
ini
, N

j
, N

j+1
, VE

i
 

    (d) Form contour ribbons FROM C, V
ini
, VE

i
, N

ini
 

    (e) Mark the contour C 

   END IF 

  END FOR EACH 

 END FOR EACH 

END SUBROUTINE 

The first step (a) is responsible for labeling all contours and rails (connections be-

tween extreme vertices) as unmarked. In step (b), the vertex Vini of an unmarked origi-

nal contour C that is met at the minimal distance from VE, but on the right side of the 

lines (VE, VVj+1), (VVj, VE), is found (Fig. 3a). In step (c), the connection whose VV is 

located on the same side as Vini+1 regarding the line (VE, Vini) is selected (Fig. 3b). 

This ensures that, when forming the ribbons related to the contour C, the path fol-

lowed in the rails has the same direction as C. In step (d), the call to the subroutine 

that forms the ribbons related to C is made. Its pseudo-code is given next. 

 

Fig. 3. Principal steps of the formation of ribbons 
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SUBROUTINE Form contour ribbons REQUIRE contour C, initial 
vertex V

ini
, extreme vertex VE

ini
, initial connection N

ini
 

 SET V EQUAL TO V
ini
 

 SET VE EQUAL TO VE
ini
 

 SET N EQUAL TO N
ini
 

 REPEAT 
  (f) Determine next extreme vertex VE

sig
 and next connection 

N
sig
 FROM VE, N 

  (g) Find the nearest vertex V
sig
 in contour C that would be 

connected to VE
sig
 FROM V 

  (h) Insert ribbon V, V
sig
, VE, VE

sig
 

  (i) Mark the connections N and N
sig
 

  (j) Determine initial connection N of the next ribbon 
FROM V

sig
, VE

sig
, N

sig
 

  SET VE EQUAL TO VE
sig
 

  SET V EQUAL TO V
sig
 

 UNTIL (V EQUAL AS V
ini
) AND (VE EQUAL AS VE

ini
) 

END SUBROUTINE 

After having executed the steps (f)-(i), that are self-explained, it is necessary to de-

termine the initial connection N of the next ribbon. The three possible situations for 

step (j) to be executed are shown in the Fig. 3d-e-f. If VEsig is terminal, then N = Nsig 

(Fig. 3f). If VEsig is branch and Vsig is on the right side of the straight lines (VEsig, VVj), 

(VVj-1, VEsig), then N = Nj-1 (Fig. 3d). Otherwise, the rail and the contour get crossed 

an odd number of times and then N = Nj+1 (Fig. 3e). 

Optionally, to simplify the result, the adjacent ribbons whose borders belong to 

contours of different sections may be fused. In this way, only the skeleton vertices 

that are involved in ramifications remain (Fig. 2f). 

2.4 Tiling of Ribbons 

As described in  [12],  a ribbon is composed by a rail L and a contour portion  PC 

that keep to each other proximity and shape similarity. This property can be exploited 

to tile the surface it forms using some simple and quick algorithm [5]. In addition, the 

first verification criterion mentioned in Section 1 can always be satisfied. 

Finally, in the fifth step of the main procedure, the tiling of each ribbon is per-

formed and the final surface is obtained as their union (Fig. 2g-h). The height of the 

skeleton vertices is intermediate to the analyzed sections, which guarantees the sec-

ond verification criterion. 

3 Complexity Analysis 

The overall complexity of the proposed method is O(n  m), where n is the number of 

vertices and m is the number of contours in the analyzed adjacent sections. 

For the calculation of the complexity of the first step, it is taken for granted that the 

number of pixels to process is proportional to n. Both the construction of the skeleton 

image and the extraction of its skeleton graph can be performed in linear time O(n). 

192 J. Pina Amargós and R. Alquézar Mancho



The graphics of Fig. 4 show the results of the execution times of these steps in a real 

example composed by 151 sections, 449 contours and 91941 vertices. Their tenden-

cies (thick lines) confirm the indicated linear time complexities. 

  

Fig. 4. Results of tests for construction of skeleton image (left) and graph (right) from different 

contours (Running in PC with Intel Pentium® processor at 736 MHz and RAM of 128 Mbyte) 

The complexity of the fourth step is dominated by the initial search of the contour 

and nearest vertex. This step is run as many times as contours there exist in the ana-

lyzed sections. As in each call to this step, the vertices belonging to the already 

marked contours are not treated, its complexity is O(n  m). This is obtained from: 

1

0

m

i m

ni
nOT . 

(1) 

A very quick algorithm is used for the ribbon reconstruction (fifth step), which pre-

sents a linear complexity O(n) [5]. 

4 Results and Discussion 

Next, some results of the application of the proposed method are shown in different 

synthetic examples. For more details [11] should be consulted. 

In a case of two contours with very different shape, similar to Fig. 1a, the results of 

surface reconstruction using three classical methods (greedy, optimization and con-

tour composition; similar to [5,7,13], respectively) are shown in Fig. 5a-c, whereas 

the result of the proposed method is displayed in Fig. 5d. In the Figs. 5e-i, different 

ramification examples (without holes in the sections) are shown where a contour 

ramifies in two (5e-g) and three (5h-i) contours; Figs. 5g and 5i contain the results of 

our method.  Another example refers to the existence of holes in some of the sections 

(Fig. 5k-l). A barely treated case in the consulted literature occurs when several con-

tours of a section should be connected to several contours of the contiguous section; 

the results of our method on two such examples (the latter also with a hole) can be 

appreciated in the Figs. 5j, 5m. A case not approached by the consulted literature is 

shown in Fig. 6 in which a part of the surface twists abruptly between the sections. 

193Extension of a New Method for Surface Reconstruction 



 

Fig. 5. 3D view of some reconstruction examples. a), b) are taken from [1]; c), f) from [13]; e) 

is taken from [4] and h), k) from [2]. d), g), i), j), l) and m) are results of the proposed method 

 

Fig. 6. Contours (a), detail of tiling (b) and 3D view (c) of a very difficult example 

All the analyzed cases show the quality of the results not only from the aesthetic 

point of view, but also in the satisfaction of the verification criteria enunciated in Sec-

tion 1. The rails related to the ramification are inserted at an intermediate height of the 

original sections (dotted-lines in Figs. 5, 6). 

5 Conclusions 

The main steps of a new method to reconstruct a surface from a set of cross-sections 

have been described. This method constitutes the extension of one previously pro-
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posed by the authors using the skeleton to solve the investigation problem [10]. 

The proposed method always reconstructs the surface of the whole projected area 

separating the material of interest between each pair of adjacent sections. It guaran-

tees the correct topology of the reconstructed surface, because the new vertices, that 

model the places where the contours ramify, are inserted at an intermediate height of 

the adjacent sections without altering the original contours. 

The method is general, simple and quick. It permits to manipulate in a same way 

all the cases reported in the literature and, even, one not tried by other authors. Its 

overall complexity is O(n  m), where n is the number of vertices and m is the number 

of contours in the analyzed adjacent sections. This improves the complexity O(n2) of 

the quickest consulted methods. 

Some application results have been shown in different examples that, regardless of 

their high degree of complexity, illustrate the excellent performance of the method. 
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