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Abstract. This paper describes a Fourier domain algorithm for surface
height recovery using shape from shading. The algorithm constrains sur-
face normals to fall on an irradiance cone. The axis of the cone points in
the light source direction. The opening angle of the cone varies with iter-
ation number, and is such that the surface normal minimizes brightness
error and satisfies the integrability constraint. The results show that the
method recovers needle maps that are both smooth and integrable, with
improved surface stability.

1 Introduction

Shape-from-shading (SFS) is a problem in computer vision which has been an
active topic of research for some three decades. The process was identified by
Marr[10] as a key process in the computation of the 2.5D sketch, and was studied
in depth by Horn[5]. The topic has also been the focus of recent research in the
psychophysics literature [9][2][3]. Stated more formally, the SFS problem can be
regarded as that of calculating the set of partial derivatives (Zx,Zy) correspond-
ing to a surface Z = Z(x, y), where Z is simply an intensity image.1 In brief,
we need to solve the image irradiance equation, E(x, y) = R(p(x, y), q(x, y), s),
where E is the intensity value of the pixel with position (x, y), R is a function
referred to as the reflectance map[6], that maps the surface gradients p = ∂Z(x,y)

∂x

and q = ∂Z(x,y)
∂y to an intensity value and s is the light source direction. If the

surface normal at the location (x, y) is n = (p, q, −1) then under Lambertian
reflectance model, the image irradiance equation becomes E(x, y) = n · s.

Unfortunately, the image irradiance equation is underconstrained, and the
family of surface normals fall on a reflectance cone whose apex angle α is equal
to cos−1E(x, y), and whose axis points in the light source direction s. Several
constraints have been used to overcome the underconstrained nature of the Lam-
bertian shape-from-shading problem. However, their main drawback is that they
have a tendency to oversmooth the recovered surface slopes and result in poor
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data-closeness. The net result is a loss of fine surface detail. For a complete
survey of most SFS methods, see [16].

In a recent paper Worthington and Hancock [14] have demonstrated how
these problems may be overcome by constraining the surface normals to lie on
the reflectance cone and allowing them to rotate about the light source direction
subject to curvature consistency constraints. Unfortunately, the needle maps de-
livered by the method are not guaranteed to satisfy the integrability constraint,
which means that the recovered partial derivatives are not independent on the
path of integration (i.e. the height function may not be recoverable). Besides,
these needle maps also suffer the drawback of high dependency on the image in-
tensities, making the method prone to noisy data such as specularities, roughness
and overshadowed areas.

There are a number of ways in which a surface may be recovered from a field
of surface normals [7,8]. One approach is to use trigonometry to increment the
height function along a path or a front [1,12]. However, one of the most elegant
approaches is that described by Frankot and Chellappa [4] which shows how the
surface may be reconstructed subject to integrability constraints by performing
a Fourier analysis of the field of surface normals.

The aim in this paper is to develop a shape-from-shading scheme that can be
used to recover integrable needle maps subject to hard constraints on Lambertian
reflectance as well as relaxing the image intensity dependance driven by such
constraints. In order to demonstrate how the two techniques can be combined, in
subsequent sections we will briefly explain the geometric approach developed by
Worthington and Hancock[14] for solving SFS, as well as the algorithm proposed
by Frankot and Chellapa [4] for enforcing integrability in SFS.

2 Geometric Approach for SFS

Worthington and Hancock [14] have developed an SFS method in which the
image irradiance equation is treated as a hard constraint by constraining the
recovered surface normals to lie on the reflectance cone. Suppose that N̂k is a
smoothed2 surface normals at step k of the algorithm, then the update equation
for the surface normal directions is

ˆ̂
Nk+1 = ΘN̂k (1)

where Θ is a rotation matrix computed from the apex angle α and the angle
between the current smooothed estimate of the surface normal direction Ñk and
the light source direction. To restore the surface normal to the irradiance cone,
it must be rotated by an angle

θ = cos−1(E) − cos−1

(
N̂k · s

‖N̂k‖ · ‖s‖

)
(2)

2 For further details about the suggested method for smoothing the normal field, see
[13]
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about the axis (u, v, w)T = Ñk × s. Hence, the rotation matrix is

Θ =


 c + u2c

′ −ws + uvc
′

vs + uwc
′

ws + uvc
′

c + v2c
′ −us + vwc

′

−vs + uwc
′

us + vwc
′

c + w2c
′


 (3)

where c = cos(θ),c
′
= 1 − c and s = sin(θ).

The needle maps delivered by this geometric framework have proved to be
useful in experiments for topography-based object recognition [15].

3 Integrability in SFS

The integrability condition in SFS ensures that the recovered surface satisfies
the following condition on the partial derivatives of the height function: Zxy =
Zyx. This condition can also be regarded as a smoothness constraint, since the
partial derivatives of the surface need to be continuous in order that they can be
integrable or independent on the path of integration. In [4] Frankot and Chellapa
proposed a method to project a gradient field to the nearest integrable solution.
They suggested to use a set of integrable basis functions to represent the surface
slopes so as to minimize the distance between an ideally integrable gradient field
and a non integrable one.

Following [4], if the surface Z is given by

Z̃(x, y) =
∑
ω∈Ω

C̃(ω)φ(x, y, ω) (4)

where ω is a two dimensional index belonging to a domain Ω, and φ(x, y, ω) is a
set of basis functions which are not necessarily mutually orthogonal, the partial
derivatives of Z̃ can also be expressed in terms of this set of basis functions using
the formulae

Z̃x(x, y) =
∑
ω∈Ω

C̃(ω)φx(x, y, ω) and Z̃y(x, y) =
∑
ω∈Ω

C̃(ω)φy(x, y, ω) (5)

Given that φx(x, y, ω) and φy(x, y, ω) are integrable, then so are the mixed partial
derivatives of Z̃(x, y).

In the same way, the possibly non integrable gradient field (which, indeed, is
the only information we have) can be represented as

Ẑx(x, y) =
∑
ω∈Ω

Ĉ1(ω)φx(x, y, ω) and Ẑy(x, y) =
∑
ω∈Ω

Ĉ2(ω)φy(x, y, ω) (6)

Note that, as Ĉ1 �= Ĉ2, then Ẑxy �= Ẑyx.
The goal then is to find the set of coefficients that minimize the quantity

d
{

(Ẑx, Ẑy), (Z̃x, Z̃y)
}

=
∫ ∫ ∥∥∥Z̃x − Ẑx

∥∥∥2
+
∥∥∥Z̃y − Ẑy

∥∥∥2
dxdy (7)
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As Frankot and Chellapa proved, the set of coefficients C̃(ω) minimizing the
distance given by the above equation is

C̃(ω) =
Px(ω)Ĉ1(ω) + Py(ω)Ĉ2(ω)

Px(ω) + Py(ω)
, (8)

where Px(ω) and Py(ω) are
∫ ∫ ‖φx(x, y, ω)‖2dxdy and

∫ ∫ ‖φy(x, y, ω)‖2dxdy
respectively.

If φ(x, y, ω) is assumed to be the set of Fourier basis functions exp(jωxx +
jωyy), with Ω = (2πn, 2πm), where n ∈ {0, 1, · · · , N−1} and m ∈ {0, 1, · · · , M−
1} for an N × M image, then Px = ω2

x, Py = ω2
y, Ĉ1(ω) = Ĉx(ω)/jωx, and

Ĉ2(ω) = Ĉy(ω)/jωy. Therefore, (8) is represented in the Fourier domain by

C̃(ω) =
−jωxĈx(ω) − jωyĈy(ω)

ω2
x + ω2

y

. (9)

In this manner, by projecting the set of coefficients C̃(ω) back to the spatial
domain, a height map corresponding to the nearest integrable surface Z̃(x, y)
can be obtained from the input gradient field.

4 Introducing the Integrability Condition in the
Geometric Approach for SFS

The idea underpinning this paper is to calculate the nearest integrable surface
and obtain the apex angle of the Lambertian cone on this surface after each
iteration. The algorithm can be summarized as follows:

1. Calculate an initial estimate of surface normals N = (Nx, Ny, Nz).
2. Smooth N to obtain N̂ .
3. Obtain the nearest integrable surface Z̃ by solving (9) using the smoothed

surface normal field N̂ .
4. Get the apex angle α of the Lambertian cone using the values of Z̃, that is

to say, α = cos−1(Z̃).
5. Calculate ˆ̂

N , by rotating N̂ , using (1).
6. Make N = ˆ̂

N and return to step 2. Repeat until a desired number of itera-
tions has been reached.

We should note that in this method the rotation matrix does not remain
static through the iterative process, since the changes in α depend on the recov-
ered surface after each iteration. It is also important to remark that due to the
projection of the surface normals to the reflectance cone after each iteration, the
z-component ˆ̂

Nz of the normal ˆ̂
N will always correspond to the calculated height

surface of the final gradient field when using the Frankot and Chellapa height
recovery method. By contrast, in the method of Worthington and Hancock the
z-component Nz will always be the normalised input intensity image. Therefore,
besides calculating surface gradients, the new algorithm also calculates height
information.
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5 Experiments

The algorithm was tested on synthetic as well as real images. The evaluation
criteria was based on the absolute height difference and degree of gradient con-
sistency (i.e. the percentage of pixels of every image whose differences Zxy −Zyx

are less than or equal to a certain threshold3). In our experiments we have com-
pared the results obtained with the geometric approach of Worthington and
Hancock, and the new integrable-geometric approach.

Three synthetic images were tested4. Forty real world images (fifteen of these
with corresponding height data, taken from the range database in [17], and the
rest taken from [11] and from [16]) were also used for tests5.

Fig. 1. Left: plot of the absolute height differences for synthetic and range images.
Right: plot of the gradient consistency degree tests.

Figure 1 (left) shows the results for the absolute height differences. The orig-
inal approach is represented by the dotted line, while the new one is represented
by the solid line. The plot reveals that there seems to be no bias for favoring
each method, and that the height difference between them is not significant.

The results of the experiments for degree of gradient consistency are summa-
rized in Figure 1 (right). The figure shows that the combined algorithm (solid
line) gives more consistent results than the original one (dotted lined), as the
percentage of gradient consistency is greater for the new approach. This suggests
that the new method is enforcing integrability in the original method.

In a further analysis of the results, Figure 2 shows a 3D plot of the recovered
heights for each method. The first column corresponds to the input image, the
second column is a plot of the range data of each image given as a base for
comparison, the third column represents the recovered height map for the new
method and the fourth column shows the height maps for the original method.
3 For all the experiments this threshold was set to 0.1.
4 These images were also used in [16].
5 For all the tests, the light source direction was assumed to be [0,0,1].
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Fig. 2. Recovered height surface for range images. From left to right: intensity image,
range data, recovered surface for the combined algorithm, recovered surface for the
original algorithm.

We can observe that the new algorithm seems to stabilize the surface, avoiding
some of the sudden changes present in the recovered surface for the original
method. Specifically, in the cases of the frog and the pelican, the recovered
surface appears to be smoother, with none of the spurious peaks in the height
map which result from the use of the original method. Also, the height plots
of Budda and Mozart show a more stable surface than those produced by the
original method.

Figure 3 shows the recovered needle maps for each method. A visual exami-
nation of the results suggests that the new method delivers needle maps that are
both smoother and contain more fine topographic detail than original method.
This effect is more evident in the cases of the frog and Budda.
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Fig. 3. Recovered needle maps for each method. Top row: combined algorithm. Bottom
row:original algorithm.

6 Conclusions

In this paper we have demonstrated how to impose integrability constraints on
the geometric approach for SFS suggested by Worthington and Hancock. We
follow Frankot and Chellapa and impose the constraints in the Fourier domain.
Experiments reveal that the resulting method exhibits improved robustness and
gradient consistency. However, although the height difference statistics do not
reveal any systematic improvement in algorithm performance, both the recov-
ered height surfaces and the needle maps delivered by the new algorithm appear
to be better behaved and also preserve fine surface detail. It is important to
comment that in this new method the calculation of surface orientations is less
constrained by the irradiances of the image, as the rotation matrix changes
through the iterative process. This is a way of relaxing the original method’s
problem of hard constraints on data-closeness with the image irradiance equa-
tion. Our future plans include using alternative basis functions and in particular
the discrete cosine transform, as well as comparing the output needle maps for
local integration tests.
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