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Abstract. This paper describes two new methods for lens distortion
calibration using image and point correspondences. Images (or fea-
ture points) captured by a camera are undistorted and projected into
a calibration pattern image. Both methods apply the Gauss—Newton—
Levenberg—Marquardt non—linear optimization technique to match, in
one case, the camera image and the pattern image, and in the other
case, selected point correspondences from the camera image to the pat-
tern image. One way to automatically find good point correspondences is
presented. Experimental results compare the performance of both meth-
ods and show better results using point to point correspondences.

1 Introduction

Most algorithms in 3-D Computer Vision rely on the pinhole camera model be-
cause of its simplicity, whereas video optics, especially wide—angle lens, generate
a lot of non—linear distortion. In some applications, for instance in stereo vision
systems, this distortion can be critical.

Camera calibration consists of finding the mapping between the 3-D space
and the camera plane. This mapping can be separated in two different trans-
formations: first, the relation between the origin of 3—D space and the camera
coordinate system, which forms the external calibration parameters (3-D rota-
tion and translation), and second the mapping between 3-D points in space and
2-D points on the camera plane in the camera coordinate system, which form
the internal calibration parameters [I].

This paper introduces two new methods to find the internal calibration pa-
rameters of a camera, specifically those parameters related with the radial dis-
tortion due to wide—angle lens.

The first method works with two images, one from the camera and one from
a calibration pattern (without distortion) and it is based on a non-linear op-
timization method to match both images. The search is guided by analytical
derivatives with respect to a set of calibration parameters. The image from the
calibration pattern can be a scanned image, an image taken by a high quality
digital camera (without lens distortion), or even the binary image of the pattern
(which printed becomes the pattern).

The second method works with point correspondences from the camera image
to the pattern image, and apply a similar procedure to the first method to
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Fig. 1. The distortion process due to lens

find the best set of parameters. The set of point correspondences are computed
automatically, taking advantage of results of the first method.

The rest of this paper is organized as follows. Sections Bl and Bl describe the
distortion and projective model that we are using. Sections [] and [ present
the methods to match images and to match pairs of points, respectively. Experi-
mental results are shown in Section[6l A brief comparison of previous calibration
methods with our methods are in section [7 Finally, some conclusions are given
in Section[§

2 The Distortion Model

The distortion process is illustrated in Figure [[l Figure [[l (b) shows an image
taken from the camera when the pattern shown in Figure[]] (a) is in front of the
camera. Note the effect of lens, the image is distorted, specially in those parts
far way from the center of the image. Figure[T] (¢) shows the radial distortion in
detail, supposing that the center of distortion is the point ¢4 with coordinates
(¢s,¢y). Undistorted pixel at position R with coordinates (z,y) points to pixel
R, with coordinates (2, Yu)-

Let I be the distorted image captured by the camera and I,, the undistorted
image associated to I;. The relationship between both images is modeled by:

Iu(edvxay) = Id(xu(gdax?!/)vyu(ed»x»y))a gd = (klvk%cwvcyasl’) (1)
Tu = Co + = (L4 kir® + ko), yu = ¢y + (y — ¢ ) (L + kar® + kor?)
r= /(52 + (- )

Where ¢ are internal calibration parameters of the camera. Parameters k; and
ko define how strong is the radial distortion with distortion center (cs,c,). Pa-
rameter s, is the aspect ratio of pixels (s, = 1 means square pixels).
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3 The Projection Model

Figure [ shows and ideal case, where the plane of the pattern is parallel to
the camera plane and center of the pattern coincides with the optical axis of
the camera. Using homogeneous coordinates, the class of 2-D planar projective
transformations between the camera plane and the pattern plane is given by [5]
[/, 9, w']! = M|z, y,w]!, where matrix M has eight independent parameters,

Mo 1My M2
M = ms My Ms
me ™y 1
Plane and homogencous coordinates are related by (zp,1 = z/w,yp = y/w)

for one plane and (z,2 = 2’'/w’,ype = y'/w’) for the other plane. Let I, be
the projection from the camera plane (with the undistorted image I,,), to the
pattern plane. The new image is given by:

IP(Gpa fﬂ, y) = Id(xp(epv Ly yu)a yp(opa xua yu))

0P = (mo, m1, ma, m3, Mg, M5, Mg, M7) (2)
T, = mMoTu+miyutma _ M3Ty+Mmay.+ms
P mexy+mry.+1 Yp = MELy+M7Yy+1

4 The Image Registration Method

The goal is to find a set of parameters #¢ and 6P so the projected image, I,
match the image, I,., of the calibration pattern put in front of the camera.

We formulate the goal of internal calibration as to find a set of parameters § =
(mo, m1, ma, m3, ma, ms, me, M7, k1, ka, ¢z, ¢y, S) such the sum, Ey, of square
differences between pixels of I, and I, is a minimum.

0 = argmin Ey(I,(0), I,) = argmin. Y (L0, 2,y) — I(z,y))*  (3)
Y(z,y)El

4.1 Non-linear Optimization

The Gauss-Newton-Levenberg-Marquard method (GNLM) [3] is a non-linear
iterative technique specifically designated for minimizing functions which has
the form of sum of square functions, like F;. At each iteration, the increment of
parameters, 66, is computed solving the following linear matrix equation:

A9 =B @
A=[JtJ+ ], B=—Jt

If there is p pixels in images and ¢ parameters in 6, A is a matrix of dimension
q % q. Matrix J, of dimension p X g, is the Jacobian of e. I is the identity matrix,
e is the vector of all differences of pixels between both images and has dimension
g x 1, so B has dimension ¢ x 1. A is a parameter which is allowed to vary at each
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iteration. After a little algebra, the elements of A and B are computed using the
following formulas,
P Oey, Oey, o dey,

a;j = 20, %’ by = — 8_&6k7 er = Ip(0, 25, y1) — Ir(zr,yx) (D)
k=1 k=1

Applying the chain rule to compute the partial derivatives and considering eq.
Bl we get,
de,  OL,(0,x =k, y = yi) _ Olp(xp, yp) Oy n Olp(zp, yp) Oyp ()

691' a 891 a$p 691 8yp 801

In order to simplify the notation, we use x,, instead of ;. and y,, instead of y,p.

O0la(zp,yp) 01a(zp,yp)
oxy, 0

and

are the partial derivatives of the image I, in the x and

y directions. %gg’_’ and % for (0, - - - 607) can be derived from eq. 2]

dxy,

Ty 9 _
amo - D 8m0 -
ox,, Yu Oyp 0
[‘)ml - D Bml -
oz, 1 oyp 0
amz - D 8m2 -
Jdx, 0 Ayp Lo
dms dms ~— D
Bmpg -0 8y; _ Yu (7)
67714 - 8’"’14 - D
Oz, 0 Oyp _ 1
oms dms ~ D
Orp _ —zuTp OYyp __ —TulYp
ams - D (9’!716 - D
Orp _ —yuTp OYp _ —Yulp
87717 D 87TL7 D

Where D = mgx,, + mry, + 1. Partial derivatives of distortion parameters are
derived from eq. [[l and two more applications of the chain rule,
Or,  Oxy 0xy | Oxp Oyy  Oyp,  Oyp Oxy | Oyp Oyy

(®)

Ozp
BE

o o
522 =(Dms—(mazy+mary,+ms)ms)/D?, g7E=(Dma—(msxy+mary,+ms)mz)/D?

=(Dmo—(mozy+mixy,+ma)me)/D?, 235 =(Dmi—(momy+mixy,+mae)mz)/D?

(9)
Finally, the last set of formulas presented in [6],

%ﬂ =1r2(x —cy)/5s

3_%? =7*(y —cy)

Oz 4z —cp) /52

St — 7“4(9 - Cy)
et = 1= (1/50) (14 k17 4 kor®) — 2(ky 4 2k2r?) (2 — ¢)?/(s3) (10)
G = —2(ky + 2kar?)(z — €2)(y — ) /52)
get = —2(k1 + 2kor®) (2 — cx)(y — ¢y) /52
Qu 1 (14 k172 + kort) — 2(y — Cy)2(k1 + 2kar?)

ch
92u = — (2 — co)(1+ krr? + kar?) /52 — 2(ky + 2kar?) (@ — ;) /5
e = —2(y — c) (k1 + 2kor?) ( — c0)? /53

where r was defined previously in eq. [l
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4.2 The Calibration Process

The calibration process starts with one image from the camera, I;, another image
from the calibration pattern, I, and initial values for parameters . The GNLM
algorithm is as follows:

1. Compute the total error, E(I,(0), L) (eq. B).

. Pick a modest value for A, say A = 0.001.

3. Compute the image I, (eq. @ B applying bilinear interpolation to improve
the quality of the image.

4. Solve the linear system of equations (@), and calculate E;(I,(0 + 66), I,).

5. if E,(I,(0 + 00),1,) > E(I,(9), I), increase A by a factor of 10, and go the
previous step. If X grows very large, it means that there is no way to improve
the solution 6.

6. if By (I,(0 + 60),1.) < Ey(I,(0),1,), decrease A by a factor of 10, replace 6
by 6 + 660, and go to the first step.

[\

When A = 0, the GNLM method is a Gauss—Newton method, and when A
tends to infinity, J0 turns to so called steepest descent direction and the size §6
tends to zero.

5 The Point Correspondences Method

This method tries to improve the calibration results using the approach described
in previous section. When the calibration ends, the undistorted and projected
image, I,,, is very similar to the pattern image, I,.. The idea is to extract points of
both images associated to distinctive features. In our experiments we use corners
as features because they are detected easily with subpixel precision.

The first step is to detect features in I, and then search its correspondence
in I,,. This search is limited to a small area because I, and I, are very similar.
Let n be the number of features, (z,x,y,r) be the coordinates of a feature in
I, and (zy,yx) be its correspondence in I,. From (zy,yx) and using eq. [ and
Bl we can get the coordinates (zpk, ypi) of the feature in the camera image (I).
These calculations are denoted as follows, z,, = fP40, 2 = 1,y = yr), Ypk =
f{;d(e,x =2,y = y) and (@pk, Ypr) = fPH0, 2 = 21,y = yx). So we have a set
of pairs of points P = {< (271, Yr1), (@p1,Yp1) >, s < (Trn, Yrn)s (Tpn, Ypn) >}

We formulate the goal of the calibration as to find a set of parameters 6 such
the sum, Dy, of square distances between points fP4(6, 2k, yrr) and (Zpk, Ypk),
is a minimum,

0 = argmin D,(0, P)
(11)

n
= argmin Z(ff-d(evx'r'kayrk) - xpk)2 + (fgd(ovxrkvyrk) - ypk)2
k=1
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(a) Calibration Pattern (b) Image from camera (c) New image

Fig. 2. The calibration process

5.1 Non-linear Optimization

We use again the GNLM method to minimize D;, but this time, the elements of
matrix A and matrix B in eq. @ are given by,

1) OTpk OYpr O 4] o
a; = ZZ:l( dgﬂeik awa;;k + gék dygp;k )’ b; = — ZZ:l(éETpikdmk + (’;/Tp,;kdyk) (12)
dzk = f:lc)d(aa Trk, yrk) - xplm dyk = fgd(eaxrkvyrk) - ypk

6 Experimental Results

We test two Fire-i400 firewire industrial color camera from Unibrain with
4.00mm C-mount lens. These cameras acquire 30fps with resolution of 640 x 480
pixels.

The pattern calibration (image I,.), showed in Figure 2(a), was made using
the program xfig under Linux. The image taken by the camera is shown in Figure
BIb). The corrected and projected image, using the image registration method, is
shown in Figure 2fc). The GNLM process required 17 iterations and 57 seconds
(using a PC Pentium IV, 1.8Ghz). We apply derivatives of Gaussians with o = 1
pixels, initial values of 8¢ = (0,0,240,320,1) and 6? = (1,0,0,0,1,0,0,0). At
the end of the calibration process, the total error, E;, between the projected
image I,,(0) and I, (Figures@(a) and (c)), was 14,820. This result is very good.

Corners of Figure 2lc) are easily detected applying two derivative filters. We
apply a derivative of Gaussian (o = 2 pixels) in one direction and then another
in the other direction (see FigureB). Pixels around corners have higher (or lower)
values in Figure B (b). Corners are calculated, with subpixel precision, as the
center of mass of pixels around the corners.

The point correspondences method required 39 iterations and less than 5
seconds. This time, F; was 14,165, a slightly better result than with the other
method. The difference is more evident from the sum of square distances, D;.
When using the image registration method we got Dy = 518, and D; = 131 for
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Fig. 3. Detecting corners

the point correspondences method, a significant reduction. This difference also
can be observed calculating the maximum individual distance between points

(di = \/d3; + d;). Using this criteria, the image registration method got dj*** =
1.84 pixels and the point correspondences method d;*** = 1.25 pixels.

Finally, Figure Bl shows an application of the parameters obtained with the
second method, ¢ = (—7.86 x 107°7,6.43 x 10713, 217.75,310.68, 1.00). Images
were expanded from 6402480 pixels to 800 x 600, to see the complete expansion.

7 Related Works

There are two kinds of calibration methods. The first kind is the one that uses
a calibration pattern or grid with features whose world coordinates are known.
The second family of methods is those that use geometric invariants of the image
features like parallel lines, spheres, circles, etc. [2].

The Methods described in this paper are in the first family of methods. The
image registration method uses all points or pixels of the image as features,
instead of the set of point correspondences of the second method. The corre-
spondence with reference points are given implicitly in the pattern image (for

Fig. 4. Original and corrected images
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the first method) or computed automatically (for the second method). Other
methods require a human operator (with a lot of patience) to find such corre-
spondences [0].

This method is an improved version of the method proposed by Tamaki et
al. [0] and the differences between both approaches are:

— We take into account exact derivatives of x, and y, with respect to 67 (eq.
[[). Tamaki uses an approximation that is valid only when z, and z, (and
Y, and yp) are very similar. This approximation makes the method not very
robust. Converge problems arise when parameters 6 are not so closed to the
right ones. Tamaki’s method for the same images shown in Figure 2] gave us
E; = 15310, a slightly greater value than our method.

— We optimize the whole set of parameters 6 using the GNLM method. Tamaki
apply twice the Gauss-Newton method, one for §¢ and other for 67.

— We use a direct registration (from the camera image towards the pattern
image), while Tamaki uses inverse registration (from the pattern image to
the camera image).

8 Conclusions

We have described two calibration methods based on the Gauss-Newton-Leven-
berg—Marquardt non-linear optimization method using analytical derivatives.
Other approaches compute numerical derivatives (e.q. [1J2/4]), so we have faster
calculations and better convergence properties.

The first method is an image registration method, which is an improved ver-
sion of a previous one [6]. The second method takes advantages of results from
the first method to solve the correspondence problem between features of the
camera image and the pattern image. Also takes advantage of detecting features
(corners) with subpixel precision. This combination gives better calibration re-
sults than with the image registration method.
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