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Abstract. Knowing a patient’s risk at the moment of admission to a medical unit
is important for both clinical and administrative decision making: it is funda-
mental to carry out a health technology assessment. In this paper, we propose a
non-supervised learning method based on cluster analysis and genetic algorithms
to classify patients according to their admission risk. This proposal includes an
innovative way to incorporate the information contained in the diagnostic hypo-
theses into the classification system. To assess this method, we used retrospective
data of 294 patients (50 dead) admitted to two Adult Intensive Care Units (ICU) in
the city of Santiago, Chile. An area calculation under the ROC curve was used to
verify the accuracy of this classification. The results show that, with the proposed
methodology, it is possible to obtain an ROC curve with a 0.946 area, whereas
with the APACHE II system it is possible to obtain only a 0.786 area.

1 Introduction

In order to determine the admission risk, it is necessary to know the patient’s condition
at the moment he or she is admitted to a medical unit. This condition represents very
valuable information to make clinical decisions such as the admission of the patient
to an Intensive Care Unit (ICU) and helps decide the distribution of resources within
the unit [1–2]. Besides, it is crucial to carry out a health technology assessment [3].
The problem that exists when determining the admission risk is that, after making the
preliminary assessment, the patient is treated, thus modifying his initial condition. A
true quantification of this risk could be achieved by assessing the results of the natural
evolution of the illness without applying medical technologies, which would be an ethical
impossibility.

In medicine, the traditional way to deal with this problem has been the creation of
physiological indexes intended to determine the seriousness of the patient’s condition
at the moment of admission, such as: Simplified Acute Physiology Score (SAPS) [4]
or Acute Physiology and Chronic Health Evaluation (APACHE [5]). Among the main
disadvantages of these indexes, we may quote the lack of an adequate characterization
of the medical information at the moment of admittance, such as a quantification of co-
morbidities [6], the linear characteristics of the composition of these indexes and the lack
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of precision to determine each individual patient’s risk. This last point makes possible
that these indexes permit to carry out global comparisons between units (they offer
accurate risk values on the average) but they are not of great help to assess technologies
within a medical unit.

At present, there exists a number of publications that intend to forecast the outcome
of medical procedures. To this effect they have applied different Data Mining methods
such as: Logistic Regression, ClusterAnalysis, Neural Networks and Bayesian Networks
[2,7–9]. Especially, the work carried out by Peña-Rojas and Sipper [8] contains an
extensive revision of genetic algorithm applications in various fields of medicine. Of
the aforementioned works, the one that is closest to admission risk estimate is the one
published by Dubowski et al [7], which analyses the outcome considering the deaths that
take place during admittance to the hospital. In spite of the fact that the prediction of the
outcome is useful when making some decisions - such as the admission of patients- these
predictions do not represent the condition of the patient at the moment of admission and
the use of these results to make a technological assessment in health is questionable
since it includes the utilization of the same technology it intends to assess [10].

This work’s proposal is based on two fundamental points: the first one consists
of using a group of variables similar to those used in physiological indexes, such as
APACHE [5]. It uses an original way of quantifying diagnostic hypotheses (including co-
morbidities) as a way to incorporate the medical knowledge that exists at the moment of
admission. The second point consists of using a non-supervised learning method, which
takes as a basis the clustering of k-means, together with a strong search method like the
genetic algorithms. This type of learning allows the formation of groups of patients, based
exclusively on the information we have about each patient at the moment of admission.
Later on we use the information contained in the outcome of the interventions, just to
assign risk to each group. It is always possible to do this when accepting the hypothesis
that interventions tend to modify the patient’s state positively. In this way, the groups that
show a greater number of patients who did not survive, in spite of the treatment, represent
the groups of higher initial risk. Thus it will be possible, later on, to classify a new patient
depending exclusively on the conditions presented at the moment of admission.

In order to assess the proposed methodology, we have used the information taken
from 294 medical records of patients who were admitted in two Intensive Care Units
(ICU) for adults. These were classified in accordance with afore described methodo-
logy. The results were compared using the classification that resulted from applying the
APACHE II [11] index by means of the use of ROC [12] curves.

2 Data Collection and Pre-processing

The data were obtained from the Intensive Care Units (ICU) of two public hospitals
of the city of Santiago, Chile. A total of 294 medical records of adult patients were
collected. 50 out of the 294 correspond to patients who died during their stay at ICU.
Table 1 shows a list of the variables that were taken at the moment of admission or during
the first 12 hours of hospitalization.

The discreet or binary variables, such as infection upon admission, can be represented
directly, but the variables used to represent physiological acuteness require a monotonous
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severity scale in order to be used efficiently with the clustering method. These variables
do not have a monotonous behavior with respect to seriousness. For example, in its
original form, temperature has a normal severity range located at the middle of the scale,
but both hypothermia and fever produce an increase in the patient’s severity condition.
To capture the severity increase in only one direction, we resort to the code used by the
APACHE system, which uses discrete ranges between zero and four. In this way, severity
always increases from zero value, which is considered normal. To encode age we also
use the five ranges defined in the APACHE system.

The method used to quantify the information contained in the diagnostic hypotheses
was the knowledge of intensivists with the double purpose of enriching the information
contained in the diagnoses and carrying out a quantification that may reflect severity.
The procedure included four steps: First, the 780 diagnoses (each patient considers the
principal diagnosis and co-morbid states up to a maximum of eight) were split into 17
groups that represent physiological systems and morbid groups (Table 2).

Table 1. List of input variables for the grou-
ping method.

Table 2. Quantification of the Diagnostic
Hypothesis

Then, the specialists classified each diagnosis in three different categories: chronic,
acute and hyperacute (except in the cases of trauma, that are all acute or hyperacute). A
third step considered that in each physiological or morbid group there may exist more
than one of these categories or there may exist a combination of these, for instance two
chronic and one hyperacute diagnoses. With these combinations, a classification system
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was created that had an associate increasing severity order according to the combination
of chronic, acute and hyperacute in each patient. Finally, an algorithm was used to assign
severity condition values to each one of the 17 groups for each patient, according to the
combination of existing diagnoses.

3 K-Means and Genetic Algorithms

The combination proposed for the clustering rescues the main strengths of the traditional
clustering methods, especially those of the k-means [13] and Genetic Algorithms (GA)
[14]. From the k-means, we can save the simplicity in the representation for cluster
creation, which has an influence in the capacity to look for different alternatives at the
same time, thus increasing the solution space and its capacity to avoid being trapped in
local minimals. From a general perspective, the first problem to be solved is to determine
the optimum number of clusters. We based the solution to this problem on a measure
of quality for the clustering. The existing literature on cluster analyses shows that one
of the most efficient measurements to determine the quality of the clustering is that of
Calinski-Harabasz [15]. We leave as a parameter the cluster range. Clustering is started
with the largest number of clusters. After that, the quality of the clustering is measured
and then the closest clusters are identified and merged. This process continues until the
lower bound of the selected clusters interval is reached. Finally, the number of clusters
that present the highest value for the Calinski-Harabasz measurement is selected.

For the particular case of admission risk, the selection of the clusters ranking made
by the user becomes easy since a large number of clusters (over 10) does not contribute
any significant advantages in the final classification and it is difficult to make a later
identification of the risk of each cluster by means of the assignation of the death rate
that is obtained from the results of the medical interventions.

3.1 Representation and Initialisation

One of the crucial aspects in the application of GA and meta-heuristic methods in general
is the nature of each particular problem. In the case of GA, the problem is to determine
which elements of the problem will be represented in each individual’s chromosome.
After assessing different proposals found in the existing literature for the application
of GA to clustering [16–17], we chose to represent – in each chromosome – the set
of centroids calculated in each iteration. In this way, the GA will be responsible for
running the solution space in a higher hierarchical level and the method component,
corresponding to the k-means, will be responsible for forming new cluster, assigning the
individuals to the nearest centroid.

A random cluster creation was used for the initialization process, making sure that
all clusters will have at least one individual. Later on, their centroids, which are used
to create chromosomes, were calculated. This initialization process is done for all the
individuals of the population.
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3.2 Selection, Crossing, and Mutation

The selection was made using the proportional or roulette method [17], which is the
method that is most commonly used when designing GA. To assign each cluster (or
chromosome) its area in the roulette, the measurement of clustering quality called sum
of squares [17] was used. The proportional method allows to choose, with higher pro-
bability, those individuals that have been better evaluated, but it does not discard those
who have low qualification. Pairs of chromosomes are gathered for the crossover, the
same individual may be selected more than once in subsequent crossovers. In this stage
all that matters is to verify that the selected pairs correspond to different chromosomes.

To carry out the crossing, it is necessary to obtain the pair of individuals from the
selection stage and to consult the crossing probability, which was previously assigned
as an initial parameter of the program. If the indication is no-crossing, the selected
chromosomes are copied to the new generation. On the contrary, if the indication is
crossing, the crossing operator is applied and the offspring are assigned in the new
population. The crossing operator works taking a random number of centroids from
both parents in order to transmit them to the offspring. The total number of centroids
must correspond to the number of clusters that are being looked for at that stage.

The representation of centroids that have been chosen facilitates this crossing opera-
tion because, in order to guarantee the creation of valid individuals it is only necessary
to make sure that there are not repeated centroids. In case of repetition, a new centroid is
chosen. Besides the aforementioned this representation does not require to manipulate
the individual data for the crossing. It only requires to assign data to the nearest centroid
and then recalculate the centroids to form the new generation.

The experimental tests showed that the centroid recalculation is a fundamental stage
of this method because it improves substantially the results and the speed with which
they are obtained. This recalculation may be interpreted as a local optimization that
improves the quality of individuals before they are passed on to the next generation. To
carry out mutation, we must consider the mutation probability that is established as an
initial parameter of the program. In this way the values of a centroid that is chosen at
random are aleatorily altered. When modifying some of the centroid’s values, this moves
through the solutions giving the opportunity of the production of new genetic material.

4 Results

The procedure followed for the cluster formation is centred in the adjustment of parame-
ters to obtain the maximum values in the Calinski-Harabasz quality scale. After trying
different parameter combinations, the quality measure reached a maximum of 48.4799
when forming four groups with a population of 20 individuals and crossing and mutation
probabilities of 0.75 and 0.05 respectively.

Once the clusters have been formed, the problem is to create an ordinal risk scale
for the groups. To this effect, in each group the proportion of dead and survivors was
identified (death rate). If we accept that the use of technology avoids death, it is possible to
affirm that the groups with the highest death rate correspond to the groups that presented
a higher admission risk.
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Figure 1 shows the groups in decreasing order according to the risk, with the dead
number in each group. It is interesting to mention that when the number of groups
increases or diminishes not only does the value of the quality measurement of the cluste-
ring decreases but also the difficulty to differentiate the risk based on death proportions
increases.

Fig. 1. Grouping obtained by the Genetic Al-
gorithm (GA) for 4 groups. CH=48,4799.

Fig. 2. Distribution of the dead in the groups
formed by APACHE II.

It is important to assess what has been achieved with the clustering. To this effect
we can resort to the APACHE method, which is the most commonly used method to
determine risk at the moment of admission to the ICU. In the specific case of the units
that have been mentioned, all the variables that conform the APACHE II index are
registered. Using these variables it is possible to estimate the risk of each patient, using
a logistic transformation that assigns a probability to the weighed score obtained from
the APACHE II variables.

To make an equivalent comparison we formed four groups, gathering the individual
risks in a decreasing order. Figure 2 shows the clustering made according to APACHE
II index, indicating the number of dead and survivors in each cluster.

It is also interesting to compare the efficiency of the proposed GA method in relation
to other traditional clustering methods. To carry out this comparison, a clustering was
made using the k-means method assigning risk in the same manner as in the case of GA.

The presentation of results based on histograms is useful to identify the group risk, but
does not offer an objective comparative parameter between the different methods. Given
the fact that the comparison is based on the classification between dead and survivors, it is
possible to measure the sensitivity and specificity to detect death as if each method were
a binary death rate classifier, with the discrimination threshold taken from each of the
generated clusters. Each binary classification generates a point (sensitivity, specificity).
Using these, it is possible to draw an ROC curve and, in this way, the area below the
ROC curve will be an objective comparative parameter. Figure 3 shows the ROC curves
that measure the advantage of the death classification of APACHE II index (area equals
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0.786); the k-means method (with a 0.888 area) and the proposed method that uses GA
(with a 0.946 area).

Fig. 3. ROC curves for GA, K-Means and APACHE.

As mentioned in the introduction, an important point in this design is the incorpo-
ration of information that contains the diagnosis hypotheses and therefore it would be
interesting to assess the contribution of this information. In order to carry out this asses-
sment, the 17 variables that represented the diagnosis hypotheses were withdrawn and
the proposed method was applied again. The area below the ROC curve gave a 0.824
value.

5 Discussion

The histogram that appears in Figure 2 (APACHE II) shows the groups in a decreasing
order according to their seriousness, However, in spite of this, the dead shows a more
homogeneous distribution among the groups than the proposed model (Figure 1). This
proves the difficulty that is found with the APACHE system to classify the patients’
individual risks correctly (despite the fact that in this case the patients are grouped
together). For this reason the APACHE system has been criticized because, although
everybody recognizes its effectiveness to determine the number of patients that may die
in a unit, it fails in the individual classification [18–19]. This limits its field to comparative
studies between units and it does not offer guarantees when it is necessary to know the
admission risk of a specific patient. But this is exactly what is needed to carry out an
effectiveness analysis of the technologies that are used in a unit.

A more precise quantification of the differences between the GA grouping method
and the APACHE system can be made comparing the ROC curve areas. Knowing that
the perfect discriminator has an area that is equal to that of the unit, the GA grouping
reaches 0.946, exceeding the ROC curve area reached by the APACHE II system by
0.161.
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The influence of incorporating the GA to the method can be assessed when comparing
the classification obtained through GA with the k-means classification. In this case we
can see that the GA classification surpasses the curve obtained by k-means by 0.058.
This is an indication that the sole idea of using simple grouping method produces an
increase of 0.103 in the ROC curve area with respect to the classification obtained by
the APACHE II system (36% of the gain is attributed to the GA and the remaining 64%
corresponds to the grouping in an isolated way).

The experiment of deleting the variables that quantify diagnosis hypotheses shows
that the inclusion of this information produces a decrease of 0.122 of the area, which
corresponds to 75.8% of the gain obtained with the total of the variables proposed with
respect to APACHE II.

From this analysis we can infer that the basic idea of using a non-supervised method
such as clustering produces improvement with respect to the standard risk evaluation
systems in medicine. But the highest values are achieved when we incorporate adequately
the information contained in the diagnosis hypotheses and the use of GA to achieve a
better clustering of patients by the risk.

6 Conclusions

Starting from the idea of using clustering analysis to build classifiers that may allow
to classify patients according to their admission risk, this paper includes the diagnosis
hypothesis quantification and the GA as the two main pillars that proved fundamental to
achieve the results shown here.

We must point out the simplicity and capacity to be reproduced offered by diagnosis
quantification, provided that we can count on the specialists to carry out the diagnosis
classification. The main problem with this classification is the splitting of diagnoses into
two degrees of acuteness: acute and hyperacute. This problem can be overcome through
consensus meetings with groups of specialists.

From the application of GA to the clustering analysis, it is worth pointing out the
simplicity of the representation and the crossing stage since the traditional applications
for this problem present complex crossing operators [16–17], with high probability to
create crippled descendants and loss of genetic material along the generations. The
use of centroids in the chromosome formation allows to preserve more adequately the
ancestors’ best genetic material, circumscribing the random component exclusively to
mutation.

A second stage in this research would be to increase the number of patients, trying
to include all the existing pathologies in one ICU; to implement a classification system
to carry out a prospective study that classifies the patients at the moment of admission
and, later on, to assess the results achieved in the unit operation.

The extension of this method to other complex treatment systems such as Neonatal
Intensive Care Units, Coronary Units or Multiple Trauma Units offers great possibilities
since in these cases the pathologies are sometimes more restricted and it is possible
to state the quantification of the diagnosis hypotheses even more accurately. But cer-
tainly the richest field for its application are the studies on Technology Assessment in
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Health Care, where the admission risk assessment is fundamental to achieve technology
effectiveness.
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