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Abstract. A Musical Style Identification model based on Grammatical Infer-
ence (GI) is presented. Under this model, regular grammars are used for mod-
eling Musical Style. Style Classification can be used to implement or improve
content based retrieval in multimedia databases, musicology or music educa-
tion. In this work, several GI Techniques are used to learn, from examples of
melodies, a stochastic grammar for each of three different musical styles. Then,
each of the learned grammars provides a confidence value of a composition
belonging to that grammar, which can be used to classify test melodies. A very
important issue in this case is the use of a proper music coding scheme, so dif-
ferent coding schemes are presented and compared, achieving a 3 % classifica-
tion error rate.

1 Introduction

Grammatical Inference (GI) aims at learning models of languages from examples of
sentences of these languages. Sentences can be any structured composition of primi-
tive elements or symbols, though the most common type of composition is the con-
catenation. From this point of view, GI find applications in all those many areas in
which the objects or processes of interest can be adequately represented as strings of
symbols. Perhaps the most conventional application areas are Syntactic Pattern Rec-
ognition (SPR) and Language Modeling. But there are many other areas in which GI
can lead to interesting applications. One of these areas is Musical Style Identification
(MSI). Here, the very notion of language explicitly holds, where primitive symbols or
“notes” are adequate descriptions of the acoustic space, and the concatenation of these
symbols leads to strings that represent musical sentences. By adequately concatenat-
ing symbols of a given musical system, a musical event emerges. However, not any
possible concatenation can be considered a “proper” event. Certain rules dictate what
can or can not be considered an appropriate concatenation, leading to the concept of
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musical style. Main features of a musical style are rhythm and melody, which are di-
rectly related with the rules used to concatenate duration and pitch of sounds, respec-
tively.

The interest in modeling musical style resides in the use of these models to gener-
ate (Automatic Composition) and classify music by style (MSI), which are our areas
of interest. The MSI area is being recently explored, mostly in the field of multimedia
databases, trying to improve content based retrieval in multimedia databases, allowing
indexing by musical style in addition to other suitable indexes. But other applications
can be musicology (finding authors for anonymous pieces) or music education. Some
Al techniques that have been employed are Hidden Markov Models [11], Self-
Organising Maps [12] and Neural Networks [17]. This paper is focused in our MSI
work [4] [5] that have been extended by adding new coding schemes for music.

2 Grammatical Inference

In this section we first quickly review the field of GI and later we will explain briefly
the techniques used in our study. Grammatical Inference is a well established disci-
pline originated by the work of Gold about “Language Identification in the Limit”
[8]. Perhaps the most traditional applicative field of GI has been Syntactic Pattern
Recognition; but there are many other potential applications. In general, GI aims of
finding the rules of a grammar G, which describes an unknown language, by means of
a positive sample set R, c { .| oo € L(G) } and a negative sample set (of samples that
should be rejected) R { B|BeX - L(G) }. A more limited framework, but more
usual in practice, is the use of only positive samples. The main problem lies in finding
a more “abstract” or general grammar G’ so that R, € L(G’) and L(G’) - R, (the ex-
tra-language) contains only strings with “similar features” to the strings from R_. A
grammar G is said to be identified in the limit [8] if, for sufficiently large sample sets,
L(G’)=L(G). Grammars and Formal Languages can be seen from a probabilistic
viewpoint too, in which different rules have different probability of being used in the
derivation of strings. The corresponding extension of GI is called Stochastic Gram-
matical Inference and this is the way of work of all the techniques used in our study.
Next, we concisely explain three of the techniques used in our study to infer the
grammars employed for composing and identifying musical styles. Other techniques
employed with less success are Regular Positive Negative Inference (RPNI) [10] and
a State Merging Technique based on probabilistic criteria called ALERGIA [3]. These
techniques are fairly well known in the GI community and have been proven useful in
other fields.

The Error-Correcting Grammatical Inference (ECGI) technique is a GI heuristic
that was explicitly designed to capture relevant regularities of concatenation and
length exhibited by substructures of unidimensional patterns. It was proposed in [14]
and relies on error-correcting parsing to build up a stochastic regular grammar
through a single incremental pass over a positive training set. This is achieved
through a Viterbi-like, error-correcting parsing procedure [6] which also yields the
corresponding optimal sequence of both non-error and error rules used in the parse.



Musical Style Identification Using Grammatical Inference: The Encoding Problem 377

Similarly, the parsing results are also used to update frequency counts from which
probabilities of both non-error and error rules are estimated. One of the most used
models in Natural Language Processing are N-Grams (a class of Markov models) [9].
An N-Gram is a sequence of symbols of length N. The first N-1 of these are the con-
text. The size of N can in theory be anything from 1 upwards. However, certain val-
ues are better than others at capturing the characteristics of the language. The larger
the value of N, the more context is captured. Though it would seem useful to have a
great N, it is not a case of the larger the better. As N grows, it captures more context.
Eventually the sequences learned become not just characteristic of the corpus, but the
exact sequences in the corpus. The parameter estimation method can be consulted in
[9]. In our study, modeling with N-Grams is performed using the CMU-Cambridge
Statistical Language Modeling Toolkit (SLM-Toolkit) [13]. The k-TSI technique in-
fers k-Testable Languages in the Strict Sense (k-TSSL) in the limit. It has been dem-
onstrated that they are equivalent to N-Grams with N=k [15]. The main difference
between them is that it is generally assumed that an N-Gram embodies the (N-i)-
Grams [i=1..N], while a k-TSSL model consists only in the model of order k. The in-
ference of k-TSSLs was discussed in [7] where the k-TSI technique was proposed.

As each inferred automaton or N-Gram model represents a musical style, “recog-
nizing” the style of a test melody consists in finding the automaton which best recog-
nizes this melody. This can be best achieved by using an algorithm that performs sto-
chastic Error-Correcting Syntactic Analysis through an extension of the Viterbi
algorithm [6]. The probabilities of error rules (Insertion / Deletion / Substitution) can
be estimated from data [1]. The Analysis Algorithm returns the probability that the
analyzed melody is (error-correcting) generated by the automaton. By analyzing the
same melody with different automata, we classified it as belonging to the musical
style (language) represented by the automaton that gave the largest probability.

3 How to Code Music for Syntactic Pattern Recognition

GI, as a Syntactic Pattern Recognition (SPR) technique, works with symbol strings.
Even though only duration and pitch of sounds (as main features of music) are used in
this work, the way they are represented implies the inclusion of more or less musical
information. The amount and/or meaning of this musical information can be key in
for the success in Musical Style Recognition (MSI). So, we have to deal with the se-
lection of pitch and duration representations and the coding into symbol strings. Many
efforts have been done within the Computer Music research community in musical
representation systems and it is not clear that one system is always better than the oth-
ers [2] [16] [18], being very dependant on the application and the recognition para-
digm. In next subsections, we present the pitch and duration representations that, in
our opinion, are more suitable for a SPR technique as GI, as well as some encoding
examples into symbol strings. Brief comments will be done for every representation,
according to its performance for MSI and Automatic Composition (AC) with GI.
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3.1 Pitch Representation

Absolute. Pitch is most often represented either by the traditional pitch naming sys-
tem (e.g. F#4-G#4-A4) or as absolute pitch (e.g. in MIDI: 66, 68, 69). It is the same
representation as in musical scores, but may be insufficient for applications in tonal
music. The main problem is that transpositions are not accounted for (e.g. repeating
the same pitch motive transposed in different samples or within the same one).

Relative. A solution for the transposition problem is the use of the relative pitch be-
tween notes. That is, the interval (number of semitones) between two notes. There
exists a somewhat ‘peculiar’ relationship between pitch strings and pitch interval
strings. If one pitch interval in a string of pitch intervals is altered then all the suc-
ceeding notes are altered (transposed) [2]. So a change in a string of pitches and in a
string of pitch intervals is not exactly the same thing. This effect appeared in our AC
experiments [4].

Melodic Contour. Pitch interval encodings readily lend themselves to the construc-
tion of a number of more abstract representations of musical strings such as contour
strings. Intervals can be categorised in a number of classes according to the signs of
intervals. Instead of taking the absolute or relative pitch, it is coded if the next pitch
goes “up” (U), “down” (D) or it is “equal” (E) to the last one. So, melodic contour can
be represented as a string from the alphabet {U, D, E}, leading to a very small alpha-
bet which provides less musical information than previous representations.

Relative to Tonal Centre. This coding scheme arose along with our experiments in
AC [5] in order to correct the relative representation ‘peculiar’ effect mentioned be-
fore. Pitch is coded as the distance to the fonal centre or tonic in semitones. It in-
cludes more musical information than the others, as it allows characterizing relation-
ships between pitches and fonality.

3.2 Duration Representation

In terms of the rhythmic component of musical strings, almost the same representa-
tions as pitch ones can be applied. It should be noted, however, that the problems that
arise with pitch representations (highlighted in the previous section) apply also for du-
ration representations.

Absolute. It is a direct translation of the representation used in musical scores (e.g.
whole note, half note, quarter note, and so on). It is the most commonly applied in
musical string processing algorithms [2] and, to this end, is the only one we have
tested.

Relative. It is well known that listeners usually remember a rhythmic pattern as a
relative sequence of durations that is independent of an absolute tempo. So, with ab-
solute duration encoding, the same rhythmic pattern written with two different metrics
will be considered as two different patterns. Representing rhythm as duration ratios
can overcome augmentations or diminutions of a rhythmic pattern (Fig. 1).
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Rhythmic Contour. Like melodic contour, durations can be coded in terms of con-
tour strings. Instead of taking the absolute or relative duration, it is coded if the next
duration is “shorter” (S), “longer” (L) or “equal” (E).

DD DD
dur. 122 2 8 6 1 1 4
ratios 1/6 1 4 /6 1 4

Fig. 1. Two rhythmic patterns that match at the level of duration ratios are in fact the same

3.3 Musical String Representation

Notes can be coded as one symbol (what we call not-splitted encodings), or with two
symbols (what we call splitted encodings). In the beginning of our study, only not-
splitted encodings where used, but we realized that these coding schemes could be
establishing a relationship between the pitch and length stronger than the one gener-
ally existing in music. Therefore, splitted encodings were introduced as a modifica-
tion from previous ones, just separating with a space character the pitch and duration
symbols (Fig. 2), obtaining better results in MSI (see section 5).

Combining pitch and duration representations exposed in the previous subsections,
12 not-splitted encodings can be defined. Splitting them, other 12 arise and, if pitches
and durations are used stand-alone, 7 more emerge. As a result, we have 31 different
coding schemes that can be tested. For naming conventions, the format “pitch repre-
sentation name - duration representation name” is used (Fig. 2). The “splitted” term is
not used with not-splitted encodings. To this end, 13 coding schemes have been tested
and results are presented in next section. In order to obtain the musical string, for
these coding schemes, we have used numbers for pitch representations (except for
contour representation) and letters for duration representation (only absolute repre-
sentation has been tested). Thus, musical strings are easier to understand, as can be
seen in Fig. 2.

] 1 } oY ] o v I
B s ded T e r o, *,ava
el |

Absolute-Absolute:

22¢ 26¢ 24¢ 24c¢ 24n Oc 24¢ 27¢ 24¢ 26¢ 27¢ 24¢ 22¢ 26¢ 22¢ 24c¢ 26¢ 24n
Relative-Absolute:

Sc 4¢ -2¢ 0c On 99¢ Oc 3¢ -3¢ 2¢ 1¢ -3¢ -2¢ 4¢ -4¢ 2¢ 2¢ -2n

Splitted Contour-Absolute:
ScUcDcEcEnRcEcUcDcUcUcDcDcUcDcUcUcDn

Fig. 2. A Gregorian style score coded with different representations
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4 Experiments

We chose 3 occidental musical styles from different epochs and we took 100 sample
melodies from each one. These samples were 10 to 40 seconds long. The first style
was Gregorian Chant. As a second style, we used passages from the sacred music of
J. S. Bach. The third style consisted of passages from Scott Joplin’s Ragtimes. Ex-
periments in Style Identification were performed using ECGI, k-TSI, N-Grams and
other GI techniques (mentioned in section 3). Three automata (one per style) are in-
ferred with each GI technique, trying different values of k (with k-TSI) and N (with
N-Grams). Test melodies are analyzed to see which of the learned automaton can
generate them with the greatest probability. Given the small size of the available cor-
pus, 10-fold Cross-Validation was used to measure the identification accuracy of the
different techniques and coding schemes. Average Classifying Error in identification
for each style was obtained and the best results are presented here.

4.1 Results

For the sake of conciseness, results will be summarized in Table 1, which shows the
best Average Classifying Error for each GI technique with some of the tested encod-
ings. Due to N-Gram’s results, the stand-alone and tonal centre encodings have only
been tested with them. Results are worst than the obtained with the other coding
schemes, being the best one a 6.66 % classifying error when using fonal centre pitch
representation.

Table 1. Classifying Error in Musical Style Identification experiments with the different GI
techniques and coding schemes employed

ECGI | K-TSI | N-GRAM

Absolute-Absolute 34.33 % 10 % 4.66 %
Relative-Absolute 13.66 % | 8.66 % 4.33 %
Contour-Absolute 8.66 % 7 % 533 %
Tonal Centre-Absolute 533 %
Splitted Absolute-Absolute 9.66 % 5.66 % 333 %
Splitted Relative-Absolute 7.66 % 5% 3%

Splitted Contour-Absolute 10 % 5.66 % 533 %
Splitted Tonal Centre-Absolute 4.66 %

4.2 Discussion

Analyzing these results by GI techniques, the best of them is clearly the N-Gram
technique. A 3% error in Style Identification is obtained, comparing with a 5% using
k-TSI and a 7.66 % using ECGI techniques. Although comparisons with the success
rates of other style identification models is not very meaningful unless the same da-
tasets are used, if we look to other similar studies [11] [12] [17], these average rates
of success can be considered as quite good. It is worth noting that GI techniques tend
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to need a larger quantity of training samples to get good results. So, it is expected that
our results will be improved if the amount of training samples is increased. The ad-
vantage of the N-Gram technique, over k-TSI and ECGI, relays on using the Back-off
smoothing procedure within the analysis algorithm [9]. It is well known in the Pattern
Recognition community that N-Gram inference with back-off smoothing outperforms
many other Syntactic Pattern Recognition techniques and, in our study, this has been a
fact.

Although the GI technique used for modeling musical style is very important, as
seen before, our study has shown that the musical string representation is determinant
in the results. It is clear that with the relative pitch representation are obtained the best
results, consequently, it is expected that relative duration representation will be a
good option to try in the future, specially splitted relative-relative encoding. The
stand-alone encodings results are bad, showing the necessity of more musical infor-
mation within the coding scheme. Thus, we do not consider the future use of the re-
mainder (relative duration and contour duration). Although with fonal centre repre-
sentation, Automatic Composition results were improved, in MSI it has been very
different. It can be due to this approach does not accounts for transpositions of a pat-
tern within the same piece. An important fact is that contour pitch encodings, spe-
cially the splitted one, have not achieved as good results as the others. It is due to the
small size of the alphabet (symbols) for these coding schemes (e.g. only 9 symbols for
Gregorian style in the splitted encoding).

Another conclusion of the study is that splitted encodings are clearly better than
joined pitch and duration representations. As a result of this discussion, for future
studies, we can discard contour and stand-alone representations, remaining 6 combi-
nations with relative duration representations to be tested. Of them, the splitted en-
codings are expected to be the best.

5 Conclusions and Future Works

A Musical Style Identification (MSI) model based on Grammatical Inference is pre-
sented. Different coding schemes for music have been proposed and compared ac-
cording to their suitability for working with Syntactic Pattern Recognition techniques
and the results obtained in our experiments. Result from this work shows the need of
proper music coding schemes, being the most important the use of two separated
symbols (pitch and duration) for the encoding of each musical note. The best results
in MSI have been obtained with the N-Gram technique, achieving a 3 % classifying
error. Several lines of study can be followed to attempt improving results. First, the
amount of data used so far is insufficient and better performance is expected by in-
creasing the number of training samples. From the coding schemes presented in this
work there are still 6 to be tested. Of course, other coding schemes must be explored,
as trees or strings labelled with information about modulations or harmony. Once
these tasks are dealt with, we could employ entire musical pieces as samples, and not
just small fragments as was done in this study.
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