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Abstract. One of the features involved in clustering is the evaluation
of distances between individuals. This paper is related with the use of
mixed metrics for clustering messy data. Indeed, when facing complex
real domains it becomes natural to deal simultaneously with numerical
and symbolic attributes. This can be treated on different approaches.
Here, the use of mixed metrics is followed.
In the paper, a family of mixed metrics introduced by Gibert is used
with different parameters on an experimental data set, in order to assess
the impact on final classes.
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1 Introduction

Clustering is one of the more used technique to separate data into groups. In
fact, we agree with the idea that a number of real applications in KDD either
require a clustering process or can be reduced to it [18]. Also, in apprehending
the world, men constantly employ three methods of organization, which pervade
all of their thinking: (i) the differentiation of experience into particular objects
and their attributes; (ii) the distinction between whole objects and its parts and
(iii) the formation and distinction of different classes of objects. That’s why,
several well known expert systems (MYCIN [23], . . . ) are actually classifiers.

However, when facing ill-structured domains as mental disorders, sea sponges,
disabilities. . . clustering has to be done on heterogeneous data matrices. In this
kind of domains (see [5], [6]), the consensus among experts is weak —and some-
times non-existent; when describing objects, quantitative and qualitative infor-
mation coexists in what we call non-homogeneous data bases. Even more, the
number of modalities of qualitative variables depends on the expertise of who is
describing the objects: the more he knows about the domain, the greater is the
number of modalities he uses.

In this work, mixed metrics introduced by Gibert in [4],[10] for measuring
distances with messy data is used. This measure has been successfully imple-
mented in a clustering system called Klass [5], [6] and applied to very different
ill-structured domains [7], [9], [11], [12].
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Main goal of this paper is to study the behavior of different metrics of Gibert’s
family (which also includes Ralambondrainy proposals as particular cases) on a
set of experimental data that presents different structures, in order to study
which parameters of Gibert’s metrics perform better in clustering, according
to the data structure. Formal approach to this problem requires a too complex
theoretical development. That’s why an experimental approach is presented here
as a first step of the research. A similar experiment was also performed by Diday
in [2], comparing the performance of two metrics [14] and [13] in clustering. Next
step of this work is to make a global comparison.

This paper is organized as follows: after the general introduction, an overview
of the possibilities of working with messy data is presented. Then, details on the
indexed family of distances that combines qualitative and quantitative infor-
mation introduced by Gibert is presented in 3, together with several proposals
on the indexes values. In section 4 the experiment context is provided. Section
4.1 introduces the experimental data sets, while section 5 presents main results.
Finally, the last section presents some conclusions and future work.

2 Clustering Heterogeneous Data Matrices

Management of non-homogeneous data matrices requires, indeed, special atten-
tion when classifying ill-structured domains. Standard clustering methods were
originally conceived to deal with quantitative variables. Upon [1], data analysis
with heterogeneous data bases may follow three main strategies:

Variables partitioning. It consists on partitioning the variables upon their type,
then reducing the analysis to the dominant type (determined owing to the group
with a greater number of variables, or the group containing the more relevant
variables, or the background knowledge on the domain. . . ).

For example, if dominant type is qualitative variables, then correspondence
analysis could be used and later a clustering on the factorial components is possi-
ble [24], [17]. Since the classification is performed in a fictitious space, additional
tools are required to enable the interpretation of the results.

This approach of course misses the information provided by the non dominant
groups of variables. A natural extension is to perform independent analysis inside
every type of variables. Problem, then, is later integration of results of parallel
analysis to produce a consistent, coherent and unique final result. Even in this
case, interactions between variables of different types (like cooking temperature
and final color of a ceramic) cannot be analyzed under this approach.

Variables converting. It consists on converting all the variables to a unique type,
trying to conserve as much original information as possible. First of all, final con-
verting type has to be decided. Conversion is not a trivial process (every variable
may be converted to a unique one, or split to a group of variables or several
original variables will be grouped to a unique transformed one). In Statistics,
traditionally, symbolic variables has been converted to a set of binary variables,



466 K. Gibert and R. Nonell

to generate the complete incidence table. Then, clustering using χ2 metrics may
be performed [3]. Dimensions of the complete incidence table implies a signifi-
cant cost increase. In Artificial Intelligence, grouping of quantitative values into
a qualitative one [22] is much more popular. This transformation implies a rel-
evant loss of information as well as the introduction of some instability in the
results, which depend on the defined grouping.

Many authors, among them [1], [16], discuss different strategies on this line,
together with the associated problems of loose of relevant information or even
making difficult final interpretation, since the transformed variables could be in
a fictitious space. Also, in [5] it is shown how converting all the variables to
qualitative ones introduces, almost always, a bias on the results, which can be
sometimes even arbitrary.

Compatibility measures. It consists on the use of compatible measures which
cover any combination of variable types, making an homogeneous treatment
of all the variables. It can, for instance, be defined a non-senseless distance (or
similarity) between individuals which uses different expressions for every variable
type.

The idea is to allow clustering on a domain simultaneously described by quali-
tative and quantitative variables without transforming the variables themselves.
Since in the core of the classification process distances between individuals have
to be calculated, a function to do it with non homogeneous data has to be found.
In the literature several proposals on this line can be found. Upon discussions on
[4] and [5], this is the approach of this work. Main advantages of this approach
are: respecting the original nature of data, there is not loss of information, it is
not necessary to take previous arbitrary decisions which can bias results, it is
possible to study all the variables together, it is possible to analyze interactions
between variables of different types. Proposals on this line could be, chronologi-
cally: Gower 71 [14], Gowda & Diday 91 [13], Gibert 91 [4,8], Ichino & Yaguchi
94 [15], Ralambondrainy 95 [21], Ruiz-Schulcloper [19].

3 Gibert’s Mixed Metrics

The input of a clustering algorithm is a data matrix with the values of K variables
X1 . . . XK observed over a set I = {1, . . . n} of individuals. Variables are repre-
sented in columns while individuals in the rows of data matrix. The cells contain
the value, xik, taken by individual i ∈ I for variable Xk, (k = 1 : K). In our con-
text, heterogeneous data matrices are supposed, so let us name ζ ∈ {1 . . . K} the
indexes of numerical variables and Q = {1 . . . K} − ζ the indexes of categorical
variables, being nζ = card(ζ) and nQ = card(Q).

Mixed metrics introduced by Gibert in [4], [10] is defined, for clustering pur-
poses as a family of metrics indexed by the pair (α, β):

{d2
(α,β)(i, i

′)}(α,β) ∈[0,1]×[0,1] (1)
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Being, d2
(α,β)(i, i

′) = αd2
ζ(i, i

′) + βd2
Q(i, i′); (α, β) indexes for weighting the

influence of variables in ζ versus those in Q; d2
ζ(i, i

′) the normalized euclidian
metrics calculated with variables in ζ and d2

Q(i, i′) a rewriting of χ2 metrics
calculated with variables in Q, supporting symbolic representation:

d2
ζ(i, i

′) =
∑

∀k∈ζ

(xik − xi′k)2

s2
k

; d2
Q(i, i′) =

1
n2

Q

∑

∀k∈Q

d2
k(i, i′) (2)

where s2
k = var(Xk). Referring to d2

k(i, i′), Ikj is the number of observations
equal to the j − th modality of Xk (namely ck

j ); Iki = card(̂i : xîk = xik). An
extended value appears for a class representative if Xk is not constant inside
the class; it is represented as (fk1

i , fk2
i , ..., f

knk
i ) where f

kj

i , j = 1, 2, ..., nk, is the
proportion of objects of the class represented by i with xik = ck

j , then

d2
k(i, i′) =






0 , if xik = xi′k
1

Iki
+ 1

I
ki′ , if xik �= xi′k

(fks
i

−1)2

Iks
+

∑nk

j=1,j �=s

(f
kj

i′ )2

Ikj
, if xik = ck

s and i′ extended on Xk

∑nk

j=1
(f

kj
i

−f
kj

i′ )2

Ikj
, for i and i′ extended on Xk

In [10] an heuristic criteria is used to propose proper values for index (α, β):

α0 =
α

α + β
& β0 =

β

α + β
; α =

nζ

d2
ζmax∗

& β =
nQ

d2
Qmax∗

(3)

with d2
ζmax∗ = maxi,i′{d2

ζ(i, i
′)} and d2

Qmax = maxi,i′{d2
Q(i, i′)}. This values1

refers the two components of the distance to a common interval, in order to give
equal influence in the determination of d2

(α,β)(i, i
′); the numerators give to each

component a proportional weight to its presence in the objects description.

Ralambondrainy proposal. In [21], Ralambondrainy also proposes a metrics
to work with heterogeneous data matrices; it is defined exactly as expression (1).
In [20], two practical ways of standardization for calculating (α, β) are presented:

– by the inertia: π1 = 1
nζ

; π2 = 1∑
{nk−1 : k∈Q}

– by the norm: π′
1 = 1√∑

{ρ2(Xk,Xk′ ):k,k′∈ζ}
; π′

2 =
√∑{nk − 1 : k ∈ Q},

ρ2(Xk, Xk′) correlation between Xk,Xk′ ; nk number of modalities of Xk.

Those proposals identify two elements of the Gibert family of mixed distances
that will also be considered in this paper.

1 Maximums can also be truncated to the 95% in order to acquire more robustness.
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4 The Experiment

As said before the main goal of this paper is to analyze the behavior of different
elements of Gibert’s family in the clustering of different data sets. An experiment
was designed according to that. For this work a single clustering algorithm will be
considered: a hierarchical reciprocal neighbors algorithm using Ward criteria (see
[24]). In future works other algorithms will also be taken into account. As a first
approach, four elements of Gibert’s family will be considered in the experiment:
d2
(α0,β0)(i, i

′) as proposed by Gibert, d2
(π1,π2)(i, i

′), d2
(π′

1,π′
2)

(i, i′), as proposed by
Ralambondrainy, and d2

(0.5,0.5)(i, i
′) which represents a non-informed option with

equal contribution to the distances of both components.
On the other hand, experimental data has to be simulated (see §4.1). Struc-

ture of data sets was decided on the basis of factors that can influence into
the behavior of the metrics, regarding the clustering process: distinguishability
of the classes is relevant (that’s why some data sets will contain overlapping
classes and others separated ones, variance of classes will also be considered);
also, the form of the classes is important (recognition of convex or filiform classes
will be tested); finally different number of classes will be tested.

For all the data sets, four clustering processes will be performed, one with
every metrics indicated above. On the results of every clustering, relevant infor-
mation will be codified in a new data matrix. A multivariate analysis will be
done with it, to see relationships among different runs. It seems reasonable to
determine good behavior on the basis of real data structure recognition, which
is easy with simulated data, since real class of every object is a priori known.

4.1 The Simulated Data Set

The basis of experimental data is also following the guidelines presented in [2],
where comparison of several hierarchical clustering methods is performed using
several kinds of experimental data with different structures. Figure 1 shows the
experimental data sets used in this work. It is obvious that it only shows the
structure of the numerical part of data sets. Every data set contains also as many
categorical variables as numerical, randomly generated with 3 modalities.

Some data sets correspond to the proposal presented in [2], others are spe-
cially introduced for our purposes. The basic structures from [2] are: concentric
classes (fig. 1(d)), chained classes (fig. 1(f)), mixture of convex and concentric
classes (fig. 1 (e)) and filiform classes in 2D (figure 1(g)), since it is known that
certain clustering algorithms perform confusing recognition in this case. Regard-
ing the discussion previously introduced, and making wider the scope of the
analysis, other structures were added in the experiment: uniform, representing
lack of structure (fig. 1(j)), convex classes (fig. 1(a,b,c)), which are supposed to
be the easier to recognize; variability of the classes is increasing from (a) to (c)
in such a way that distinguishability of classes decreases. Finally, filiform classes
in three dimensions (see figure 1 (h)).
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Fig. 1. Experimental data sets

5 Results

Every data set is clustered using the four metrics given in §4. Then some relevant
information on the results (like number of resulting classes —which is an output
in hierarchical clustering, size of every class, number of real classes, real classes
form, etc) is used for a later Principal Components Analysis, in order to study
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relationships among runs; tax of misclassification is used as a quality measure
of runs ( fig. 2 shows the projection of the runs on the first factorial plane).

Fig. 2. First factorial plane with experimental run represented.

It seems that first axis is opposing less structured data sets (on the left
hand side, like uniform) against more structured ones (on the right, filiform 02
or circular 03). The more remarkable thing, regarding the second axis, is that
given a data set, its four runs use to be vertically displayed in two subsets: on the
lower side the clustering performed with Gibert proposal d2

(α0,β0)(i, i
′) (–MA in

the figure), much more down than a second group, where the rest of runs appear
in close neighborhood (except for circular 02 and filiform 03 for which runs with
d2
(π′

1,π′
2)

(i, i′) (–R2 in the figure) are projected in intermediate positions). So, in
general it can be said that the second axis is opposing Gibert proposal for (α, β)
to the other ones, which are difficult to distinguish.

6 Conclusions and Future Work

It has been seen that changing metrics produces real effects on the clustering
results. It is then important to know when different metrics have better behaviour
for recognizing real classes.

From the four studied elements of Giber’t family, d2
(α0,β0)(i, i

′) is the one
which produces more different results on the used experimental data sets. It
seems, from this work, that the other three possibilities do not produce great
differences on the used clustering method. In addition, for case filiform 03,
d2
(α0,β0)(i, i

′) is the only one that allow recognition of real classes.
Next step is to complete the experiment in order to check if this separate

behavior of d2
(α0,β0)(i, i

′) is maintained, and if it is possible to obtain more knowl-
edge on the other metrics; it will be interesting to work with different structures
on the categorical part of data matrix, which was blocked for this work to uni-
form distribution. After that, comparison with results reported in [2] will also be
done, as well as with other proposals from the literature, like Gower coefficient.
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In the last step, including other clustering algorithms will enable study of more
general properties of those metrics.
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