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Abstract. In this paper we introduce a new method for recognizing and classi-
fying images based on concepts derived from Logical Combinatorial Pattern
Recognition (LCPR). The concept of Typical Segment Descriptor (TSD) is in-
troduced, and algorithms are presented to compute TSDs sets from several
chain code representations, like the Freeman chain code, the first differences
chain code, and the vertex chain code. The typical segment descriptors of a
shape are invariant to changes in the starting point, translations and rotations,
and can be used for partial occlusion detection. We show several results of
shape description problems pointing out the reduction in the length of the
description achieved.

1   Introduction

Recognition of 2D objects is an important task useful in many machine vision appli-
cations and research areas such as robotics and computer vision [1, 2]. A 2D shape is
a feature often used for its distinctive classification power. A shape is what remains of
a region after disregarding its size, position and orientation in the plane [3]. Non-nu-
meric shape description methods search representations (e.g. a chain code, a graph) of
the original shape so that only important characteristics are preserved. Other shape
description techniques generate numerical descriptors given as feature vectors.
The required properties of a shape description scheme are invariance to translation,
rotation an scaling. Shape matching or recognition refers to methods for comparing
shapes. Usually, given a group of known objects, the identical or most similar objects
in a scene must be found. There are many imaging applications where scene analysis
can be reduced to the analysis of shapes [4], though effectively representing shapes
remains one of the biggest hurdles to overcome in the field of automated recognition.
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In this paper we introduce a new boundary-based method for recognizing and
classifying images originated from concepts of Logical Combinatorial Pattern Re-
cognition (LCPR). The concept of Typical Segment Descriptor (TSD) is introduced.
Using a shape’s Freeman chain code its TSDs are computed, so they inherit the data
reduction property of this representation. An algorithm for computing the TSD set
from closed shapes is given.
Conversion (mapping) of an analog image onto a discrete one (digitization) is based
on several assumptions [5]. It is assumed that the acquisition of an image is done
using a set of physical captors, which could be modeled by a set of subsets of the
continuous plane. The simplest idea is to assume a discrete partition of the plane. If
only partitions involving regular polygons are considered, the number of different
partitions is reduced to three: triangles, squares, or hexagons. The selection of the
type of partition determines differences in concepts like neighborhood, adjacency, and
connectivity. In this work we assume that partition is in regular squares and the algo-
rithms presented assume closed boundary shapes.
Recently, machine learning and symbolic processing tools have been extended to
Image Processing problems. New image representation concepts have been developed
[6, 7]. The new method presented here uses ideas from LCPR.
Chain codes are frequently used for image representation since they allow consi-
derable data reduction. The first approach for representing digital curves was intro-
duced by Freeman [8]. By means of this representation several properties of arbitrary
planar curves can be determined: moments, inertial axes, etc. [9]. Curves are encoded
as line segments that link points of a rectangular grid. These points are the grid points
closer to the curve. This process is called chain encoding.
Many authors have used chain coding for shape representation [2, 10], a normali-
zation of the code with respect to the starting point is achieved by using shape num-
bers [3]. In [11] contours of handwritten characters are chain coded and recognition
cost and accuracy are reported.
A new chain code for shapes composed of regular cells is defined in [12]. It is called
Vertex Chain Code (VCC), and is based on the number of cell vertices that are in
touch with the bounding contour of the shape. Concepts of VCC are extended for
representing 3D shapes in [13], producing a curve descriptor invariant to translation.
Concepts from LCPR are used for  image identification in [14], where a method for
solving supervised pattern recognition problems using binary descriptors is reported.
A generalization can be achieved by transforming numerical descriptors into k-valued
sets so that k-valued logic tools can be used.
If some features of an object take values that cannot be found in the descriptions of
objects of the remaining classes, then such a sequence of values is called a descriptor.
If a certain descriptor loses this property when a feature is not included, then it is
called a Non-Reducible Descriptor (NRD) [15].
In [16] an algorithm (KORA) is reported to select the features that form a minimal
descriptor of every object in a database of descriptors. It has been extended and used
on non-image-like data [17, 18] and is used in [14] for recognition of objects in raw
images. In this latter work the concept of sub-description of an object is transformed
in a fragment of an image. Considering each image as a one-dimensional array a
learning matrix is formed. Differences of corresponding pixels are used to conform a
dissimilarity matrix. In this manner, the concept of feature is lost and the set of co-
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lumns selected as descriptive attributes change if transformations such as rotations,
translations or scaling are applied.
NRDs are reported as a concept for representing a minimal set of characteristics  that
can be used for object recognition, the TSD proposed here complies with the same
objective but, instead of using the whole learning matrix, only the chain code is used.
This paper is organized as follows: in Section 2 TSDs are defined and their main
properties discussed. Section 3 presents results, and in Section 4 conclusions are
drawn.

2   Typical Segment Descriptors

Suppose that a set of segmented binary 2D-images (shapes) X1, X2,…,Xn is known. For
each shape, the chain code is computed based on δ-connectivity, δ=4,8. Each δ-chain
has a first difference (derivative) D(X1), D(X2),…,D(Xn) associated. The derivative of a
shape is a sequence of codes representing changes of direction. The length of the
derivative D(X) will be denoted |D(X)|. It is assumed that objects can be rotated in

angles 
δ

360
*k , with k integer, without change in the derivative.

Definition. A sequence y1y2…yp is a p-segment of a circular sequence of codes
D(X)=x1x2…xm if p≤m and for some fixed j=1,…,m it is observed that yt=xj+t with
t=1,…,p. p is the length of the p-segment. For example 222310 is a 6-segment of
112223100223312.
Definition. Given two segments Θ and Ξ of length p and q respectively, Θ is a sub-
segment of Ξ, if p≤q, and for a certain circular index rotation yt=xt, t=1,…,p. It is easy
to observe that Φ=12112 is a sub-segment of  Θ=112223100223312.
Definition. A p-segment Θ of the derivative D(X) is a segment descriptor of  image X
with respect to image Y, if there does not exist a p-segment Ξ of D(Y) such that Ξ=Θ.
If, from Θ it is not possible to eliminate either the first element or the last one while
keeping the property of segment-descriptor, then Θ is a typical segment descriptor. It
will be denoted as tsd(X/Y) or simply tsd. A tsd of minimal length is called minimal
segment descriptor. In general, it is not unique.

Figure 1 shows two shapes, the starting point from which their boundary was tra-
versed, the path of their 4-chain codes which are given as shape numbers, and corres-
ponding first differences.

Fig. 1. Two shapes, their 4-chain codes (C) and first derivatives (D)
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It can be verified that the Θ=30300 is a 5-segment descriptor of the shape X with res-
pect to Y, while Ξ=3003 is not. Θ is not a typical segment-descriptor because 3030 (a
subsegment) is a segment descriptor of X with respect to Y.
The previous definitions do not depend on the concept of the derivative. That is, they
can be applied to chain codes or other representations directly.
The set of all typical segment descriptors of X with respect to Y will be denoted as
TSD(X/Y). A tsd can be present only in Xi (but not in Xj (i≠j) ), so it differentiates Xi

with respect to the other shapes. The set of tsds that fulfill this quality will be denoted
TSD(Xi).
The properties of a shape’s TSD set include:
Property 1. From the condition Xi≠Xj, i≠j, i,j=1,…,n, it follows that each shape has at
least one typical segment descriptor. This is obvious because in the worst case, for
each Xi, a subchain of D(Xi) of length |D(Xi)|-1 is a tsd.
Property 2. Different tsds have different discriminative power, since they can dis-
criminate with respect to a different number of shapes. Based on this, a weight W(Θ)
can be associated with each tsd Θ, being proportional to the number of discriminated
shapes.
Property 3. Each tsd Θ∈TSD(X/Y) is linked to a unique subsequence in its original
chain code which corresponds to a differentiating characteristic of X. Therefore, two
or more occurrences of Θ inside TSD(X/Y) can be associated to the appearance of this
characteristic with different or equal starting directions.
To highlight the differences between two occurrences of the same Θ in TSD(X/Y), we
adopt the following conventions:

• Θ0 : the first code of the subsequence of X that originates Θ is 0.
• Θ1 : the first code of the subsequence of X that originates Θ is 1.
• …
• Θδ-1 : the first code of the subsequence of X that originates Θ is δ-1.

Observe that, though a tsd Θ can appear as Θd (d∈{0,1,…, δ-1}) in TSD(X/Y), the
same tsd can appear as Θf (f≠d) in other object having the same shape. In Figure 1, 01
is a tsd of X with respect to Y and the subsequence 330 originates it. That means that
the four subsequences: 001, 112, 223, and 330, never can be present in Y. Figure 2
shows a graphical representation of these subsequences.
Note that not necessarily all of these sequences are simultaneously present in the
shape, but they can eventually appear depending on the shape pose. In Figure 1, 001
and 330 are present, but not 112 nor 223.

Fig. 2. Subsequences that can originate tsd 01 from TSD(X/Y)

The following holds for the shapes in Figure 1:
TSD(X/Y)={013, 010, 30301, 13033, 30300, 130031}
TSD(Y/X)={100, 1310, 03032, 30312, 003000, 130002, 000302}
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2.1   TSD Rotation Invariance

Property 4. Compatibility of TSD(X/Y): Let TSD(X/Y)= },...,,{
qd2d1d

q21 ΘΘΘ , di<δ. For

any rotation of X with magnitude δj∈{0, 1, …, δ}, all 
id

iΘ in D(X) are in the

form jid

i

δδ⊕Θ  for i=1,…,q, where �δ represents the sum mod δ. This property states

that each TSD(X/Y) has associated other δ-1 sets that contain the results of rotating
the original set, and that it is possible to predict in what form every tsd will appear in
each set. So, if shape X is rotated by δj, there will be a corresponding set TSD(X/Y)
with a known form for every tsd.
Definition. Compatibility of X with respect to Y, Comp(X/Y), is the set of all possible

n-tuples of dj in all possible sets },...,,{
qd2d1d

q21 ΘΘΘ , these sets can be obtained by rota-

ting the original. A similar definition could be formulated for TSD(X). In Figure 1 it
holds that the set of tsds {13033, 30300,130032}is not a compatible set. However,
{13030, 30301, 130032} is compatible.

2.2   Partial Occlusion Detection Using TSD

Definition. The number of occurrences of a tsd Θd∈TSD(X/Y) is denoted the fre-

quency of Θd, αd. The frequency of Θ is a δ-tuple, Freq(Θ)=(α0,α1,…,αδ-1). ∑
−

=

1

0i
i

δ
α is the

absolute frequency of Θ in TSD(X/Y) and will be denoted as Θ .

Another important attribute is the relative order in which the tsds appears. Θ is the
predecessor of Ξ (Θ=Pre(Ξ)) if there is no other tsd in between. Then Ξ is the
successor of Θ (Ξ=Suc(Θ)). In Figure 1, 30301 is the predecessor of 013.
Definition. A sequence of tsd in TSD(X/Y) is connected if they, all in sequence, form
a subchain of the original chain code. The connectivity of X, denoted as Con(X), is the
set of all connected sequences in TSD(X/Y). Each single tsd is a member of Con(X).
In Figure 1, 30301, 013, 13033 and 30300 are connected.
Note that attributes of each Θ (tsd of X) such Θ , Pre(Θ), Suc(Θ), as well as features

of X such Comp(X) and Con(X) can be used for detecting the presence of the shape in
a scene, even in case of partial occlusion. If a tsd of the shape if not detected due to an
occlusion, but some of its attributes are checked, as well as other properties of the
shape, then some certainty about the presence of the shape could be calculated. This is
subject of our current research.

2.3  An Algorithm for the Computation of TSD(X/Y)

In order to determine the set of all possible tsds of a shape with respect to other
shapes, TSD(X/Y), two situations can be considered: each shape constitutes a class;
each class is formed by more than one shape. In this latter case, the procedure is the
same but only segments from different classes have to be compared [17].
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Let D(X) and D(Y) be two derivatives. Each p-segment of X is tested as being a tsd.
The set of tested segments are denoted Rev(X). The algorithm is:

Step 1. Let p = 1, TSD(X/Y)=∅, Rev(X)= ∅.
Step 2. Let Sp be the next p-segment that can be extracted from D(X), i.e, a p-segment
formed from an incremental starting position in D(X).
Step 3. If Sp∈Rev(X) go to step 9.
Step 4. If Sp∈TSD(X/Y) go to step 9.
Step 5. If some Θ∈TSD(X/Y) is a subsegment of Sp, go to step 8.
Step 6. If there is in D(Y) a p-segment Ep such that Ep=Sp go to step 8.
Step 7. Add Sp to TSD(X/Y), go to step 9.
Step 8. Add Sp to Rev(X).
Step 9. If it is not possible to extract another p-segment from D(X), make p=p+1.
Step 10. If p=|D(X)| end, else go to step 2.

The design of an algorithm for computation of the set TSD(X) is not complex. It is
only necessary to find the intersection of all sets of tsds of X with respect to the other
shapes. The identification of X in an image will be easy if the shapes are isolated in
the scene, finding at least one tsd from this intersection is sufficient to verify that
shape X appears in the scene.
Additional steps should be added if the intersection is empty. Several alternatives can
be used in these circumstances. A simple choice is to build a set taking one tsd from
each set of tsds of X with respect to the other shapes. In order to verify the presence of
X in an image it will be necessary to find all the elements of the set created in this
manner. In our experiments we build this set selecting tsds with bigger weights.

Fig. 3. Shape contours of letters A, B, C, D

3   Results

Figure 3 shows contours of some letters used in our experiments. Tsds that differen-
tiate B from the remaining shapes where computed using the proposed algorithm.
Results are shown in Table 1. Note that the sum of the lengths of tsds in TSD(B/X),
with X={A,C,D}, is less than the length of C(B), so they describe shape B with res-
pect to the others in a more compact form. Even in cases where the sum of tsds is
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bigger than the length of C(B) it will not be necessary, in general, to compare the
chain code or the derivatives with respect to all the tsds.

Table 1. Sets of typical segment descriptors of shape B with respect to the other shapes.

TSD(B/A): {332, 10000, 00010, 13130, 31313, 001310, 131000, 000001, 3100133}

TSD(B/C): {332, 310013, 100130, 1000011, 00010002, 00000001, 000000101}

TSD(B/D): {332, 13130, 10010, 001310, 1000011, 0000100002}

Table 2 shows the sets of TSD(X), X={A,B,D}. In case of C the intersection of its sets
of tsds with respect to the others letters was empty, so we use the alternative des-
cribed in 2.3. Figure 4 illustrates the set of tsds obtained for C and their compatibility
with rotations in direction r.

Table 2. TSD sets calculated for A, B and D.

TSD(A/{B,C,D}) TSD(B/{A,C,D}) TSD(D/{A,B,C})

{111} {332} { 013103}

Note that the presence of the shape can be verified finding only one tsd. This property
is useful when the shapes are isolated in the scene. Other properties of the tsds can be
used if noise or occlusions affect the boundary: their absolute frequency, order of
appearance, connectivity, etc.

Fig. 4. TSD(C) elements and compatibility with rotations with magnitude r

4   Conclusions

A new method for description and identification of objects has been introduced. The
concept of Typical Segment Descriptor is defined and its properties are enumerated.
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The invariance of TSD to changes in starting point, translation, rotation and scaling,
and its usefulness for partial occlusion detection are explained. The rotation applied to
a known shape in the scene can be detected using the compatibility of the TSD.
Advantages of using TSD instead of chain codes are verified through examples with
sensible reduction in the length of the description that will be used during identi-
fication.
Algorithms for the computation of the typical segment descriptors of one shape with
respect to another, and to all shapes of a different class, are proposed. They can be
used when the boundary is encoded using the Freeman’s chain code or any other
chain such as the Vertex chain code.
The efficiency of using the TSD approach for shape identification has been shown in
synthetic scenes, obtaining encouraging results.
Suggestions for further work include to extend the use of typical segment descriptors
to segmentation techniques, to study other properties that could be useful for detection
of changes in scale.
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