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Abstract. In this paper, we introduce a new approach to selecting the best hyper-
plane classifier (BHC) from the optimal pairwise linear classifier is given. We first
propose a procedure for selecting the BHC, and analyze the conditions in which
the BHC is selected. In one of the cases, it is formally shown that the BHC and
Fisher’s classifier (FC) are coincident. The empirical and graphical analysis on
synthetic data and real-life datasets from the UCI machine learning repository,
which involves the optimal quadratic classifier, the BHC, the optimal pairwise
linear classifier, and FC.

1 Introduction

Linear classifiers have been extensively studied because of their classification speed and
their simplicity in the implementation. We consider two classes, ¢; and cg, which are rep-
resented by two normally distributed d-dimensional random vectors, x; ~ N (uq, X'7)
and xo ~ N(p,, X5). Thus, the statistical information about the classes is determined
by the mean vectors, gt; and pt5, and the covariance matrices, 31 and X'5. We assume
that these parameters are already known, or estimated by using a conventional estimation
method, such as the maximum likelihood estimate (MLE), the Bayesian estimate [4/14]),
etc. We also assume that the a priori probabilities of the two classes are equal. When
dealing with two normally distributed random vectors, the general form of the optimal
Bayesian classifier is quadratic. In special cases, the quadratic function can be factored
as a product of two linear functions, as follows:

C1

91(x)g2(x) S0, (1)
C2

where g1 (x) = wix 4+ w; and g2(x) = whx + ws.

This is possible when the necessary and sufficient conditions hold [11112]]. Although
(D is optimal, and it achieves high classification accuracy, it requires two linear algebraic
operations to classify a single object. We will see later in this paper that using the best
of these two hyperplanes leads to nearly optimal classification.
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Various schemes that yield linear classifiers have been reported in the literature,
including Fisher’s classifier [4J6I13]], the perceptron algorithm (the basis of the back
propagation neural network learning algorithms) [9]], piecewise recognition models [7],
random search optimization [8]], removal classification structures (1)), adaptive linear
dimensionality reduction [5] (which outperforms Fisher’s classifier for some data sets),
linear constrained distance-based classifier analysis [3]] (an improvement to Fisher’s
approach designed for hyperspectral image classification), and recursive Fisher’s dis-
criminant [2)).

Rueda and Oommen [IT}T2] have recently shown that the optimal classifier between
two normally distributed classes can be linear even when the covariance matrices are not
equal. They showed that although the optimal classifier for normally distributed random
vectors is a second-degree polynomial, this polynomial degenerates to be either a single
hyperplane or a pair of hyperplanes. In this paper, we introduce a novel approach to
selecting the best hyperplane classifier (BHC) in the framework of optimal pairwise
linear classifiers.

2 Optimal Pairwise Linear Classifiers

Letx; ~ N(pq, X1)andxs ~ N (pu,, X'9) be two normally distributed random vectors.
The three cases and the conditions in which the optimal classifier is a pair of hyperplanes
are listed below.

Case I:  Suppose thafl
K1 = —Ho = [,ula s a,ud]ta 21 = 17 and 22 = diag(a‘l_lv s 70,(;1). (2)

The optimal classifier is a pair of hyperplanes if and only if any of the following
conditions is satisfied.
@) 0<a;<l,a; >1,ap =1, =0,forallk =1,...,d, 7 # j,
k # i, k # j, with

1
ai(l—a;)p? +a;(1 — ai),u? — —(aia; —a; —aj +1)log (3)

4
(aiaj) =0..
i) a; 75 1, a; = 1,,uj = O,forallj 752
(iii) a; =1,foralli=1,...,d.
When d = 2, and the parameters have the form of:
1 = — Mo = [’f', S]t7 Z'1 = Ia 22 = diag(a_17b_1)7 (4)
the condition of (@) is instead:
1
a(l —b)r? +b(1 — a)s® — Z(ab—a—b—ﬁ—l)log(ab) =0, Q)
" In this paper, diag(a1, ... ,aq) represents a d x d diagonal matrix, whose diagonal elements

are ai, ... ,aq respectively.
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Case II:  Suppose that

t
le[/l17...,,uz‘,.-.7,llj,.--,,Uzd} ’

t
Mo = [:U’h"' y Mi—1y =My i1y« - o s Hj—15 =gy Hj415 - - - ,,U/d] (6)
¥, =diag(a; ... a7t ... 7aj’l,... ,a; "), and

Z’gzdiag(al_l,...,aj_l...,ai_l,...,agl).. @)

The optimal classifier is a pair of hyperplanes if and only if y? = u?.
When d = 2, and the parameters are of the form:

Wy = —poy = [r,8]", X1 = diag(a™*, b7 1), and Xy = diag(b~,a" 1), (8)

the necessary and sufficient condition is 72 = 5.

Case I1I:  Suppose that the covariance matrices have the form of (@), and p; = p.
Then, the classifier is always a pair of hyperplanes.

3 Selecting the Best Hyperplane

First of all, we introduce the following definition, which will be fundamental in the
criteria for selecting the BHC.

Definition 1. Let g(x) be the value resulting from classifying a vector x. The sign of
9(x), sgn(g,x), is defined as follows:

—1lifg(x) <0
sgn(g,x) =< 0ifg(x) =0 )
Lifg(x)>0
In other words, a new sample falls in the “negative” side, sgn(g,x) = —1, or in

the “positive” side, sgn(g,x) = 1. Ties are resolved arbitrarily, where we assign 0 to
sgn(g, x). The criteria for selecting the BHC is based on the result of classifying the two
means, and uses Definition [[to evaluate the sign resulting from the classification.

Rule 1 Letx; ~ N(py, X1)andxs ~ N(po, X5) be two normally distributed random
vectors, and g1(x)g2(x) be the optimal pairwise linear classifier. The BHC is selected
as per the following rule.

Select:

o g1, if sgn(gi, py) # sgn(gu, po),
® go, if sgn(ga, 1) # sgn(ga, ), or
e g1 and ga, if sgn(gy, py) = sgn(g1, py) = 0. O

In other words, the BHC is the hyperplane that separates the space into two regions
when the mean vectors are different. One region contains ¢, and the other contains ft,.
When the mean vectors are coincident, both g; and g, are the best classifiers, and hence
both must be selected.

We now analyze the conditions for selecting the BHC for the case in which the
covariance matrices are the identity and a diagonal matrix respectively (Case I). The
formal proof of the result can be found in [10]
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Theorem 1. Let x; ~ N(uy, X1) and xo ~ N(py, Xo) be two normally distributed
random vectors, where the parameters have the form of (), and

y+ = ala— 1)z + ala+ 1)r — fs, and (10)
y- =a(l —a)zr —ala+1)r — (s, (11)
be the linear functions ( in their explicit form) composing the optimal pairwise linear

classifier, where o = Y-"=- and 8 = 1.
The linear function gl( ) is selected as per Rulelll if:

K€ (%n r) when g1(pq) > Oand g1(py) <0, or (12)
K € (r, %T) when g1(pq) < 0and g1(py) > 0, (13)
where Kk = s ‘I:}).

Conversely, go(x) is selected when & is outside the intervals.

The extension of Theorem [[to d-dimensional normally distributed random vectors,
where d > 2, is straightforward. The conditions for which the BHC is selected are similar
to those of the two-dimensional case. The formal proof for the result can be found in
(10}

We now analyze another case (Case II) in which the mean vectors are in opposite
directions and the diagonal covariance matrices have the two elements of their diagonal
switched.

Theorem 2. Let x; ~ N(pq, X1) and xo ~ N(py, X'o) be two normally distributed
random vectors whose parameters are of the form of (8). The BHC is always:

a(x)=c+y=0 ifr=s,and (14)
=x—y=0 ifr=—s.. (15)

The formal proof of this theorem can be found in [[10]]. The extension to d-dimensional
normally distributed random vectors, where d > 2, can be derived by replicating the
steps of the proof of Theorem[2] and substituting r and s for y; and p; respectively. The
formalization of the result is stated and proved in [10].

We now show that for the case discussed above, i.e. when the two distributions have
mean vectors of the form of (6), and covariance matrices of the form of (@), the BHC
is identical to Fisher’s classifier. In the theorem below [10]], we show the result for
d-dimensional normally distributed random vectors, where d > 2.

Theorem 3. Let x1 ~ N(py, X1) and x3 ~ N (9, X3) be two normally distributed
random vectors whose mean vectors and covariance matrices have the form of (6) and
() respectively. The BHC is identical to Fisher’s classifier.

The third case that we consider is when we deal with two normally distributed
random vectors whose covariance matrices have the form of (Z), and their mean vectors
are coincident. This case is the generalized Minsky’s paradox for the perceptron. The
result for two-dimensional normally distributed random vectors is stated as follows, and
the proof is available in [10].
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Theorem 4. Let x; ~ N(uy, X1) and xo ~ N(py, Xo) be two normally distributed
random vectors whose covariance matrices have the form of (&), and whose mean vectors
have the form p, = py. The BHC is composed of two linear functions:

nx)=—zxz—y+(r+s),and g(x)=x—y+(s—r).. (16)

The generalization of the result above for d-dimensional normally distributed random
vectors, where d > 2, follows the same steps of the proof of Theorem [l The details
of the proof are found in [I0]. The result of Theorem [ is quite useful in deciding
which linear function should be selected as the BHC, a single hyperplane or the pair of
hyperplane composing the optimal pairwise linear classifier. Indeed, the case in which
the distributions have coincident means rarely occurs in real-life scenarios.

The extension of the BHC classifier for more than two classes is straightforward. It
can be achieved by deriving the BHC for each pair of classes. Then, the classification
is performed by using the Voronoi diagram constructed using all the “inter-class” BHC
classifiers. How this framework works in real-life scenarios is a problem that we are
currently investigating.

4 Classification Accuracy and Speed

In order to test the accuracy and speed of the BHC and other two linear classifiers, we have
performed some simulations for the different cases discussed in Section[3l We chose the
dimensions d = 2 and d = 3 and trained our classifier using 100 randomly generated
training samples, each sample represented by a two or three dimensional vector. For
each case, we considered two classes, ¢; and co, which are represented by two normally
distributed random vectors, x; ~ N (1, I) and xo ~ N(u,, X'9) respectively, where I
is the identity.

The first case that we analyze consists of two examples that instantiate two-dimensi-
onal normally distributed random vectors, 2DD-1 and 2DD-2, whose mean vectors and
covariance matrices satisfy the conditions of (@). The parameters are g, = —py ~
(0.747,1.914)", X5 ~ diag(0.438, 5.827), ;= —py ~ [—1.322, —1.034]", and X5 ~
diag(2.126, 0.205) respectively.

The second case tested in our simulations is an example of two three-dimensional
normally distributed random vectors, 3DD-1, whose covariance matrices and mean vec-
tors, which satisfy the constraints of @), are g, = —p, ~ [0.855,1.776,0]" and
X5 ~ diag(0.562, 3.842,1).

In each case, the OPLC was obtained using the methods described in [TT/T2]. The
BHC was obtained by invoking Rule [ introduced in Section[3] and Fisher’s classifier
(FC) was obtained using the method described in [4].

To test the classifiers, we then generated ten sets each containing 100 random samples
for each class using the original parameters. The results obtained after testing the three
classifiers are shown in Table[Il. The classification accuracy was computed as the average
of the percentage of testing samples that were correctly classified for each of the ten
data sets. Besides for each individual data set, the average between the classification
accuracies for classes c; and cy was computed. The classification speed represents the
average number of CPU seconds taken to classify 100 testing samples.
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Table 1. Classification accuracy and speed obtained after testing three linear classifiers, OPLC,
BHC and FC, on randomly generated data sets.

Example OPLC BHC FC
Accuracy Speed Accuracy Speed Accuracy Speed
2DD-1 92.15 448 9185 1.75 91.15 1.80
2DD-2 96.20 438 96.15 1.73 9515 1.79
3DD-1 9340 457 9330 211 9235 1.82

For the first two examples, 2DD-1 and 2DD-2, the classification accuracy of the BHC
is very close to that of the OPLC, and higher than that of FC. For the three-dimensional
example, 3DD-1, we again observe the superiority of the BHC over FC. We also see that
the BHC attains nearly optimal classification — just 0.1% less than the optimal classifier,
OPLC. The BHC and FC are more than twice as fast as the OPLC, and both the BHC
and FC achieve comparable speed rates. In Figure [[l the BHC, the OPLC, FC, and the
samples of one of the testing data sets for each class, are plotted. It is clearly seen that FC
misclassified objects which are in a region where the samples are more likely to occur.
Similar plots for the other two examples are available in [[10].

Fig. 1. Testing samples and the corresponding classifiers for two-dimensional normally distributed
random vectors whose parameters are those of Example 2DD-1.

We also conducted experiments on real-life datasets. For the training and classifica-
tion tasks we have composed 10 data subsets with all possible pairs of features obtained
from the first five numeric features. For each of the pairs we composed the training set
and the testing set by drawing samples without replacement from the original datasets.
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The OQC and FC have been trained by invoking the traditional maximum likelihood
method (MLE) [414]. The OPLC and the BHC have been trained by following the
procedure described in [10], thus yielding the approximated pairwise linear classifier,
and subsequently the best hyperplane, for each subset.

The classification of each object was performed using the classifiers mentioned
above, and invoking a voting scheme, which assigns the class in which the sample
yielded a positive result for the majority of voters. Ten voting rounds were invoked
(one for each pair of features), and thus, the majority for class c¢; was chosen to be five
or more voters. From the WDBC dataset, we randomly selected, without replacement,
100 samples for training, and 100 samples for the testing phase for each class. The
classification accuracy obtained from testing the OQC, the OPLC, the BHC and FC are
shown in Table2l The results on the table show that using the voting scheme, as expected,
the OQC is more accurate than the other classifiers. We also observe that the OPLC and
the BHC (both achieving the same classification accuracy) lead to higher classification
accuracy than FC. When considering the pair-based classification, the averages on the
fifth column show that the OQC was the most accurate classifier. In this scheme, the
BHC outperformed the OPLC, and FC was the least accurate classifier. We also observe
that on the WDBC, the OPLC and the BHC achieve nearly optimal classification. Similar
results that show the efficiency of the BHC, and a graphical analysis on real-life date are
available in [10].

Table 2. Classification accuracy obtained from testing the classifiers on the WDBC data set.

Classifier Benign Malignant Avg.(voting) Avg.(pair)

0QC 96.00  87.00 91.50 88.45
OPLC 95.00  86.00 90.50 87.85
BHC 95.00  86.00 90.50 88.05
FC 93.00  85.00 89.00 86.30

5 Conclusions

In this paper, we presented an approach that selects the best hyperplane classifier (BHC)
from the optimal pairwise linear classifier (OPLC). We first introduced the criteria for
selecting the BHC given the OPLC. We then formalized the conditions for selecting the
BHC for three cases. In the second case (the most general scenario for multi-dimensional
random vectors), we have shown that the BHC is identical to Fisher’s classifier (FC).

The efficiency of the BHC, the OPLC and FC has been evaluated in terms of classi-
fication accuracy and speed. In terms of accuracy, we have shown that the BHC is nearly
optimal, and in some cases, it achieves the same accuracy as FC. The empirical results
on real-life datasets show that the OPLC and the BHC attained similar classification ac-
curacy, and that the BHC is superior to FC in the WDBC datasets. The graphical analysis
corroborates this relation.
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The extension of the BHC for d-dimensional random vectors, where d > 2, is far

from trivial, as it involves to derive an MLE method for the constrained pairwise linear
classifier. How this MLE is designed, and how the corresponding BHC is derived is a
problem that is currently being undertaken.
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