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Abstract. For a given planar region P its discretization on a discrete
planar point set S consists of the points from S which fall into P . If
P is bounded with a convex polygon having n vertices and the number
of points from P ∩ S is finite, the obtained discretization of P will be
called discrete convex n-gon.
In this paper we show that discrete moments having the order up to
n characterize uniquely the corresponding discrete convex n-gon if the
discretizing set S is fixed. In this way, as an example, the matching of
discrete convex n-gons can be done by comparing 1

2 · (n + 1) · (n + 2)
discrete moments what can be much efficient than the comparison
“point-by-point” since a digital convex n-gon can consist of an arbitrary
large number of points.

Keywords: Discrete shape, coding, moments, pattern matching.

1 Introduction

It is known for many years that the moments are good descriptors of real shapes
([4,8]). They are used in many computer vision, image processing, and pattern
recognition tasks ([2,5]). For simple “continuous” shapes as they are lines, circles,
ellipses,... a finite set of moments is sufficient for recovering the original shape
– usually, it is enough to solve a system of equations. If we try to reconstruct
regions bounded by convex polygons (triangles, quadrangles,...) the problem of
reconstruction of the original shape from a set of moments becomes more com-
plicated but still solvable. The complication comes from the fact that there are
no suitable equations for the boundaries of such polygonal convex regions.

But, in computer applications of the “moment techniques” we manipulate
mostly with discrete data – not with real objects described by their equations.
In areas as they are pattern recognition, pattern classification, (digital) image
analysis, e.t.c., real objects are replaced with their discretizations – i.e., they are
represented by finite point sets which are obtained by some discretizing process.
It implies that there are infinitely many real shapes with the same discretization.
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Fig. 1. Discretizations of isometric shapes A (points labeled by a) and B (points la-
beled by b) on three different discretizing sets are shown. In all presented cases, the
discretizations of A and B are non isometric, but discretizations of A coincide with the
discretizations of a given ellipse E.

So, even if we know an equation of the real object (what usually does not happen
in the mentioned research areas), it is not suitable to represent the discrete
image of a given real object by the corresponded equation because it can be
happened that the considered digital object has many different characterizations
(see discretizations of the shape A from Fig. 1). More over, isometric planar
regions may have non-isometric discretizations on the same discretizing set (see
discretizations of the shapes A and B from Fig. 1) which also shows that the
use of the “original objects” (sometimes called preimages) for a characterization
of a given discrete object could be inappropriate.

Here, we prove that discrete moments having the order up to n are enough
for a unique characterization of discrete convex n-gons presented on a fixed
discrete set. In this way, as an example, a fast comparison between discrete
convex n-gons is enabled. In case of a relatively small number of edges of digitized
convex polygons with respect to the number of sample points the comparison of
the corresponded discrete moments can be much faster than than the comparison
“point-by-point”.

We conclude this introduction with the basic definitions and denotations.
By discrete convex n-gon we mean the discretization of a planar region which

is bounded by a convex n-gon. Formally, a discrete convex n-gon D(P ), (see
Fig. 2) from a fixed discrete point set S is defined as

D(P ) = {(x, y) | (x, y) ∈ P ∩ S, the boundary of region P is a convex n-gon}.

Throughout the paper, it will be assumed but not mentioned, any appearing
discrete convex n-gons consists of a finite number of points. For an illustration,
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Fig. 2. (a) Discretizations of non isometric quadrangles ABCD and PQRS are iden-
tical and they consist of 12 numbered points. (b) During the discretization process
the vertices A, B, C, and D (i.e., P, Q, R, and S) are usually unknown. We can only
manipulate with the obtained discrete set (i.e., discrete 4-gon).

the discretizations on the set consisting of all points with the coordinates which
are rational numbers (i.e., S = Q2 ) are not considered.

Since the characterization of discrete convex n-gons described here is based
on a suitable use of discrete moments we give a precise definition. The discrete
moment µp,q(X) of a finite number point set X is:

µp,q(X) =
∑

(x,y)∈X

xp · yq .

The moment µp,q(X) has the order p + q. In the rest of the paper it will be
assumed (even not mentioned) that p and q are nonnegative integers. The set of
nonnegative integers is denoted by No.

Through the paper a finite set means a set consisting of a finite number of
points. Also, a unique characterization and a coding will have the same meaning.

We shall say that a continuous function z = f(x, y) separates sets A and
B if the sign of f(x, y) in the points from A differs from the sign of f(x, y)
in the points from B. Precisely, it is
either A ⊂ {(x, y) | f(x, y) > 0} and B ⊂ {(x, y) | f(x, y) < 0},
or A ⊂ {(x, y) | f(x, y) < 0} and B ⊂ {(x, y) | f(x, y) > 0}.
Some examples are given on Fig. 3.

2 Characterization of Discrete Convex n-gons

In this section it will be shown that the discrete moments having order up to n
match uniquely the discretized polygonal convex n-gon presented on a fixed set
S. We start with the following theorem.
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Fig. 3. (a) z = c · x + d · y + e separates discrete sets A (points labeled by a) and
B (points labeled by b). z = (x − f)2 + (y − g)2 − h also separates A and B. But,
z = (c · x + d · y + e) · ((x − f)2 + (y − g)2 − h) does not separate A and B.
(b) z = f(x, y) does not separate the sets A (points labeled by a) and B (points labeled
by b). z = g(x, y) also does not separate A and B. But, z = f(x, y) · g(x, y) separates
A and B.

Theorem 1. Let A1 and A2 be two finite planar sets. If there exists a
function of the form

f(x, y) =
∑

p+q≤k

αp,q · xp · yq, where p, q ∈ No (1)

which separates A1 \ A2 and A2 \ A1 then

µp,q(A1) = µp,q(A2) with p, q ∈ No and p + q ≤ k

is equivalent to A1 = A2 .

Proof. If A1 = A2 then the corresponding discrete moments are equal obviously.
It remains to prove that the equality of the corresponded moments of the order
up to k preserves A1 = A2. We prove that A1 �= A2 and

∑

(x,y)∈A1

xp · yq = µp,q(A1) = µp,q(A2) =
∑

(x,y)∈A2

xp · yq

(satisfied for all p, q ∈ No with p + q ≤ k) lead to a contradiction. Since
A1 �= A2 we can assume A1 \ A2 �= ∅ (else we can start with A2 \ A1 �= ∅).
Further, because there exists a function f(x, y) =

∑
p+q≤k αp,q · xp · yq which

separates A1 \ A2 and A2 \ A1, we can assume (for instance) f(x, y) > 0 if
(x, y) ∈ A1 \ A2, while (x, y) ∈ A2 \ A1 implies f(x, y) < 0. Now, we are able
to derive the contradiction 0 < 0 which finishes the proof.

0 <
∑

(x,y)∈A1\A2

f(x, y) −
∑

(x,y)∈A2\A1

f(x, y)
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=
∑

p+q≤k




∑

(x,y)∈A1\A2

αp,q · xp · yq +
∑

(x,y)∈A1∩A2

αp,q · xp · yq





−
∑

p+q≤k




∑

(x,y)∈A2\A1

αp,q · xp · yq +
∑

(x,y)∈A1∩A2

αp,q · xp · yq





=
∑

p+q≤k



αp,q ·
∑

(x,y)∈A1

xp · yq − αp,q ·
∑

(x,y)∈A2

xp · yq



 = 0. [[]]

Next, we prove the main result of the paper.

Theorem 2. Fix a discrete point set S. Let given discrete convex n-gons
D(P ), D(P1) ⊂ S. Then

(µp,q(D(P )) = µp,q(D(P1)) with p + q ≤ n, p, q ∈ No) =⇒ D(P ) = D(P1).

Proof. Let D(P ) and D(P1) be different discrete convex n-gons. We will show
that there always exists a separating function of the form (1) (with k ≤ n) which
separates D(P ) \ D(P1) and D(P1) \ D(P ). Then, the statement will follow
directly form Theorem 1, specifying A1 = D(P ) and A2 = D(P1).

Since D(P ) �= D(P1) and µ0,0(D(P )) = µ0,0(D(P1)) are assumed, we
have D(P ) \ D(P1) �= ∅ and D(P1) \ D(P ) �= ∅.

For convenience and without loss of generality we can assume that P and
P1 do not have common vertices and common edges, but also that there is no
edge of P (i.e., P1) which belongs to the boundary of P1 (i.e., P ) – such an
assumption is possible because D(P ) and D(P1) are finite number point sets.

Let we consider the set-intersection of P and P1 and let

A1, A2, . . . , Ai1 ≡ B1, B2, . . . , Bj1 ≡
≡ Ai1+1, Ai1+2, . . . , Ai2 ≡ Bj1+1, Bj1+2, . . . , Bj2 ,

. . . . . .

Aik−1+1, Aik−1+2, . . . , Aik
≡ Bjk−1+1, Bjk−1+2, . . . , Bjk

≡ A1

be the vertices of P ∩ P1 listed in the counterclockwise order and denoted in
such a way that the line segments

[A1, A2], . . . , [Ai1−1, Ai1 ],
[Ai1+1, Ai1+2], . . . , [Ai2−1, Ai2 ],

. . . . . . . . . ,

[Aik−1+1, Aik−1+2], . . . , [Aik−1, Aik
]

belong to the boundary of P , while

[B1, B2], . . . , [Bj1−1, Bj1 ],
[Bj1+1, Bj1+2], . . . , [Bj2−1, Bj2 ],

. . . . . . . . . ,

[Bjk−1+1, Bjk−1+2], . . . , [Bjk−1, Bjk
]
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belong to the boundary of P1. Further, let

– α1 · x + β1 · y − γ1 = 0 be the line l1 determined by A1 and Ai1 ;

– α2 · x + β2 · y − γ2 = 0 be the line l2 determined by Ai1+1 and Ai2 ;

– . . . . . .

– αk · x + βk · y − γk = 0 be the line lk determined by Aik−1+1 and Aik
.

Then we will show that the function

f(x, y) =
k∏

i=1

(αi · x + βi · y − γi) (2)

separates the set-differences D(P ) \ D(P1) and D(P1) \ D(P ).
Namely, since the points

A1, Ai1 , Ai1+1, Ai2 , Aik−1+1, Aik

are successive intersection points of the boundaries of P and P1, we have:

i) for any i from {1, 2, . . . , k}, all points from D(P ) \ D(P1) belong to the
same half-plane determined by the line li – consequently, f(x, y) in all
points from D(P1) \ D(P ) takes the same sign;

ii) for any point X from D(P1) \ D(P ) there is exactly one integer i from
{1, . . . , n} such that li separates X from D(P ) \ D(P1). In other words,
the function f(x, y) takes the same sign in all points from D(P1) \ D(P )
and the sign differs from the sign taken in the points from D(P ) \ D(P1).

The items i) and ii) imply that f(x, y) is a separating function for
D(P ) \ D(P1) and D(P1) \ D(P ).

Let us mention here that another separating function for the same set-
differences is

f̃(x, y) =
k∏

i=1

(α̃i · x + β̃i · y − γ̃i) (3)

where

– α̃1 · x + β̃1 · y − γ̃1 = 0 is the line l̃1 determined by B1 and Bj1 ;

– α̃2 · x + β̃2 · y − γ̃2 = 0 is the line l̃2 determined by Bj1+1 and Bj2 ;

– . . . . . .

– α̃k · x + β̃k · y − γ̃k = 0 is the line l̃k determined by Bjk−1+1 and Bjk
.

Due to Theorem 1, the existence of a function of the form (1) which separates
D(P ) \ D(P1) and D(P1) \ D(P ) (we can take either (2) or (3)) completes the
proof. [[]]

The previous proof is illustrated by Fig. 4. In the given example n = 7, k = 3,
and two separating functions are described in the capture of the figure.
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3 Comments and Conclusion

In this paper we consider finite number point subsets of a fixed discrete point
set S which are occupied by planar regions whose boundaries are convex n-gons.
Such sets are called discrete convex n-gons. Through the manuscript, there is no
any assumption about the structure of S. We derive a result which shows that
there are no two different discrete convex n-gons whose corresponded discrete
moments of the order up to n coincide. Or, more formally, the mapping

D(P ) −→ ( µ0,0(D(P )), µ0,1(D(P )), µ1,0(D(P )), . . . ,

µ0,n(D(P )), µ1,n−1(D(P )), . . . , µn,0(D(P )) )

is one-to-one while D(P ) belongs to the set of digital convex n-gons.
A precise performance analysis could not be given since there are no assump-

tion about the structure of S . In any case, it can be said that the result enables
the matching of discrete convex n-gons by comparing (n+1)·(n+2)

2 numbers (which
are all discrete moments of the order up to n) instead of the comparing “point-
by-point”. Obviously, the comparison “point-by-point” can be very expensive
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Fig. 4. f(x, y) =
∏i=3

i=1(αli · x + βli · y − γli) is a separating function for D(P ) \ D(P1)
(points labeled by a), and D(P1) \ D(P ) (points labeled by b).
In accordance with denotations from the proof of Theorem 2, B1 ≡ A5, B2 ≡ A6,
B3 ≡ A8, B5 ≡ A9, B6 ≡ A10, and B7 ≡ A1. The function which is the product of the
linear functions corresponded to lines determined by pairs of points (B1, B2), (B3, B5),
and (B6, B7) is also a function which separates D(P ) \ D(P1) and D(P1) \ D(P ).
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because the discrete convex n-gons may consist of an arbitrary large number of
points. In areas of practical applications S can correspond to the set of sensors or
to the set of reference points whose choice depends of the nature of application.

Of course, more precise analysis can be done in the area of digital image
analysis - i.e., if S is an integer (squared) grid (it is planned as a future work).
In the literature, the problems related to digital squares are already considered.
In [3,9] the recognition problem is studied.

It is worth to mention that the representation (coding) problem for digital
convex polygons from an integer grid can be solved by decomposing the bound-
ary of the considered digital polygon onto digital straight line segments and, after
that, to characterize (code) the obtained straight line segments. Both, efficient
algorithms for the decomposition of digital curves into maximal straight line seg-
ments and efficient coding scheme for digital straight line segments already exist
– see [6,10] and [1,7]. Let us notice, that the coding scheme presented here is
expected to be more robust because it is not based on the boundary points only,
as it would be in the case of the coding based on the boundary decomposition
into digital straight line segments. Also, such a coding procedure could not be
applied to discrete convex polygons from an arbitrary discretizing set.
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