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Abstract. This paper describes the application of a new model to learn
probabilistic context-free grammars (PCFGs) from a tree bank corpus. The
model estimates the probabilities according to a generalized k-gram scheme
for trees. It allows for faster parsing, decreases considerably the perplexity
of the test samples and tends to give more structured and refined parses.
In addition, it also allows several smoothing techniques such as backing-
off or interpolation that are used to avoid assigning zero probability to any
sentence,

1 Introduction

Context-free grammars may be considered to be the customary way of rep-
resenting syntactical structure in natural language sentences. In many natural-
language processing applications, obtaining the correct syntactical structure for
a sentence is an important intermediate step before assigning an interpretation
to it. But ambiguous parses are very common in real natural-language sentences
(e.g., those longer than 15 words). A set of rather radical hypotheses as to how
humans select the best parse tree [1] propose that a great deal of syntactic dis-
ambiguation may actually occur without the use of any semantic information;
that is, just by selecting a preferred parse tree. It may be argued that the pref-
erence of a parse tree with respect to anaother is largely due to the relative fre-
quencies with which those choices have lead to a successful interpretation. This
sets the ground for a family of techniques which use a probabilistic scoring of
parses to the correct parse in each case.

Probabilistic scorings depend on parameters which are usually estimated
from data, that is, from parsed text corpora such as the Penn Treebank [2]. The
most straightforward approach is that of treebank grammars, [3]. Treebank gram-
mars are probabilistic context-free grammars in which the probability that a
particular nonterminal is expanded according to a given rule is estimated as the
relative frequency of that expansion by simply counting the number of times it
appears in a manually-parsed corpus. This is the simplest probabilistic scoring
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scheme, and it is not without problems; we will show how a set of approxi-
mate models, which we will call offspring-annotated models, in which expansion
probabilities are dependent on the future expansions of children, may be seen
as a generalization of the classic k-gram models to the case of trees, and in-
clude treebank grammars as a special case; other models, such as Johnson's
[4] parent-annotated models (or more generally, ancestry annotated models) and
IBM history-based grammars [5, p. 423],6] offer an alternate approach in which
the probability of expansion of a given nonterminal is made dependent on the
previous expansions. An interesting property of many of these models is that,
even though they may be seen as context-dependent, they may still be easily
rewritten as context-free models in terms of specialized versions of the original
nonterminals.

The next secticn proposes our generalization of the classic k-gram models
to the case of trees, which is shown to be equivalent to having a specialized
context-free grammar. A simplication of this model, called the child-annotated
model or k = 3, for short, is also presented in that section.

2 The Model

Let 2 = {71, 72,...,7g} be atreebank, that is, a sample of parse trees.
Forall & > 0 and for all trees 7 = a(t1t2 ...1n) € 2 we define the k-root of 7
as the tree

o ifk=1
o{rg_1(t;)...re_1(t,,)) otherwise

relotr o) = { (1)
The sets fix(¢) of k-forks and s, (t) of k-subtrees are defined for all k > 0 as
follows:

ottt =B U] sy it <

2)

ik t1...4m) if O < deptl R T
splo(ty . tm)) = Uiz18k (t;) U { g( ! ) i)t,herwigg (o ) (3)

where depth(t) denotes the depth of the tree ¢ having in own that in a single
node tree it is zero.

We define the treebank probabilistic & testable grammar G = (N, %, S, P)
through:

- N = o (fu()) U sieea () U {ST:
— X is the set of labels in 12;
- & is the start symbol;
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-P = {(r,p(r)) |r € R A p(r) € [0,1]} where R C N x (MU Z)*t is
a set of production rules (usually written as A — «, where A € A and
a € (MU X)) and p(r) is the emission probability associated with the rule
r. The set P is built as follows:

e forevery tree ¢ € v¢(12) add to P the rule S — t with probability

E £02 65?"; 1{7)
oS — t) = == ==~ (4)
( i
where é,, = 1 if ¢ = b and zero otherwise;
o foreverytreeo(tits...ty) € fr(f2) addto P therulery_i(o(tita ... tm)) —
1ty ... ty with probability

ZTEQ C(O’(tltg e tm),T)
ZTEQ C(’I“k_l(O'(tltg PN tm)), T)
©
Here C(t,7) counts the number of times that the fork ¢ appers in the
tree T;
o foreverytree a(fyly...t) € $¢(2) add to P therule o{tits .. . i) —
t1 tz ... ty, with probability

p(Tk_l(O'(tltz e tm)) —t1ty ... tm) =

plo(tits. . tm) — by oo b)) =1 )
Defined in this way, these probabilities satisfy the normalization constraint

foreach 4 € N: Z pA—a)=1 N
wA—raEP

and the consistency constraint. PCFGs estimated from treebanks using the rel-
ative frequency estimator always satisfy those constraints [7] [8].

Note that in this kind of models, the expansion probability for a given node
is computed as a function of the subtree of depth k — 2 that the node generates,
i.e., every non-terminal symbol stores a subtree of depth k — 2. In the particular
case k = 2, only the label of the node is taken into account (this is analogous to
the standard bigram model for strings) and the model coincides with the simple
rule-counting approach used in treebank grammars by Charniak [9].

However, in the case k = 3, we get a child-annotated model, that is, non-
terminal symbols (o4 03 ... o) are defined by:

- the node label o,
~ the number m of descendents (if any) and
- the labels in the descendents o1, 02, ..., 0, (if any) and their ordering.

As an ilustration, consider a very simple sample with only the tree in the
figure 1. If we choose k = 2, then

- 1 (S(NPVP)) = S;
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— f2(S(NP VP)) = {S(NP VP), NP(N), VP(V NP), NP(NP PP), PP(P NP}}
~ 51(S(NPVP)) =

and the CFG is
G™ = ({S,NP,VP,PP}, (N,V,P},S,P),
with P containing the rules

S —+NPVP
NP — NP PP
NP 3 N

VP - VP PP
VP - VNP
PP - PNP

However, for & = 3 we obtain

- r2(S(NP VP)) = S(NP VP)

- f3(S(NP VP)) = {S(NP(N) VP(V NP)), VP(V NP(NP PP)),
NP (NP(N) PP(P NP)), PP(P NP(N))}

- 5(S(NP VP)) = {NP(N)}

and the CFG is
GBIl = ({S,S(NP VP),NP(N), VP(V NP), NP(NP PP), PP(P NP)}, {N, V, P}, S, P),

with P containing the rules

S — S(NPVP)
S(NPVP) — NP(N) VP(VNP)
VP(VNP) — V NP(NPPP)
NP(NP PP) —s NP(N) PP(P NP)
PP(PNP) — PNP(N)

NP(N) —N

For comparison, if one uses a parent-annotated version of the grammar (fol-
lowing Johnson [4]), one gets the following rules ! (where the superindex is the
parent’s label).

S —3 SNP SVP
SNP — N

SVP — VVFNP
VPNP — NPNP NPPP
NPNP — N

NPPP ., P FPNP
PPNP 5 N

! As will be seen in section 3, parent-annotated grammars usually have Jess parameters
than child-annotated grammars, contrary to what this example may suggest.
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Fig.1. A sample parse tree

3 Experiments

3.1 General Conditions

We have performed a series of experiments to assess the structural disambigua-
tion performance of offspring-annotated models as compared to standard tree-
bank grammars, that is, to compare their relative ability for selecting the best
parse tree. To better put these comparisens in context, we have also evaluated
Johnson's [4] parent annotation scheme, To build training corpora and test sets
of parse trees, we have used English parse trees from the Penn Treebank, release
3. In all experiments the training corpus, consisted of all of the trees (41,532) in
sections 02 to 22 of the Wall Street Journal portion of Penn Treebank, modified
as above. This gives a total number of more than 600,000 subtrees. The test set
contained all sentences in section 23 having no more than 40 words.

A Chappelier and Rajman’s [10] probabilistic extended Cocke-Younger-Kasami
parsing algorithm (which constructs a table containing generalized items like
those in Earley's [11] algorithm) was used to obtain the most likely parse for
each sentence in the training set; this parse was compared to the corresponding
gold-standard tree in the test set using the customary PARSEVAL evaluation
metric [12,5, p. 432] after deannotating the most likely tree delivered by the
parser. PARSEVAL gives partial credit to incorrect parses by establishing the
labeled precision (P) and labeled recall (R) measures.

3.2 Structural Disambiguation Results

Here is a list of the models which were evaluated:

~ A standard treebank grammar, with no annotation of node labels (NO or
k = 2), with probabilities for 15,140 rules.
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~ A child-annotated grammar (CHILD or k = 3), with probabilities for 92,830

rules.

A parent-annotated grammar (PARENT), with probabilities for 23,020 rules.

- A both parent- and child-annotated grammar {(BOTH), with probabilities for
112,610 rules.

As expected, the number of rules obtained increases as more information
is conveyed by the node label, although this increase is not extreme. On the
other hand, as the generalization power decreases, some sentences in the test
set become unparsable, that is, they cannot be generated by the grammar.

ANNOTATION | R P Fr—100% | EXACT|PARSED |
No(k=2) 70.7%|76.1%10.4% |10.0% |100% |57
CHILD (k= 3)|79.2%|74.2%|19.4% [13.6% [94.6% |9
PARENT 80.0%|81.9%(18.5% [16.3% [100% |340
BOTH 80.1%|75.6%|20.5% [14.7% [79.6% |75
Table 1. Parsing results with different annotation schemes: labelled recall R, labelled
precision P, fraction of sentences with total labelled recall fr—,q0%. fraction of exact
matches, fraction of sentences parsed by the annotated model, and average time per
sentence in secands.

The results in table | show that

- The parsing performance of parent-annotated and child-annotated PCFG is
similar and better than those obtained with the standard treebank PCFG.
The performance is measured both with the customary PARSEVAL metrics
and by counting the number of maximum-likelihood trees that (a) match
their counterparts in the treebank exactly, and (b) contain all of the con-
stituents in their counterpart (100% labeled recall, fr_;gp%). The fact that
child-annotated grammars do not perform better than parent-annotated
ones may be due to their larger number of parameters compared to parent-
annotated PCFG. This makes it difficult to estimate them accurately from
currently available treebanks (only about 6 subtrees per rule in the experi-
ments).

- The average time to parse a sentence shows that child annotation leads to
parsers that are much faster. This comes as no surprise because the number
of possible parse trees considered is drastically reduced; this is, however,
not the case with parent-annotated models.

It may be worth mentioning that parse trees produced by child-annotated mod-
els tend to be more structured and refined than parent-annotated and unanno-
tated parses which tend to use rules that lead to flat trees.

On the other hand, child-annotated models, CHILD and BOTH, were unable
to deliver a parse tree for all sentences in the test set (CHILD parses 94.6% of the
sentences and BOTH, 79.6%). To be able to parse all sentences, those smoothed
models, were evaluated:

- A linear interpolated model, M1, where the probability of a tree ¢ is

p(t) = Apa(t) + (1 — A)pa(t) ®)
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here, ps(t) and p,(t) are the probabilities of the tree ¢ in, respectively, the
model k¥ = 3 and k = 2. The value of X was 0.7 (selected to minimize the
perplexity}.

- Atree-level back-off, M2, where the highest order model such that the prob-
ability of the event is greater than zero is selected. Some care has to be taken
in order to preserve normalization.

— A rule-level back-off model, M3 that builds a new PCFG from the rules
of the tree-k-grammar models and adding new rules which allow to switch
among those models. In particular, the new PCFG consists of three different
kinds of rules:

1. k = 3 rules with modified probability in order to preserve normaliza-
tion,
2. back-off rules that allow to switch to the lower model, and,
3. modified k& = 2 rules to switch-back to the higher model.
The new grammar has 92,830 k£ = 3 rules, 15,140 £ = 2 rules and 10,250
back-off rules.

MODEL|R P EXACT|PARSED |¢
M1 80.2%|(78.6%|17.4% [100% |57
M2 78.9%|74.2%|17.1% | 100% |9.3
M3 82.4%(81.3%|17.5% | 100% |68

Table 2. Parsing results with different smoothed models.
The results in table 2 show that:

- M2 is the fastest but its performance is worse than that of M1 and M3.
- M1 and M3 parse sentences at a comparable speed but recall and precision
are better using M3.

Compared to un-smoothed models, smoothed ones:

- Cover the whole test set (k = 3 did not).
~ Parsed at reasonable speed (compared to PARENT).
- Achieved acceptable performance (k = 2 did not).

4 Conclusion

We have introduced a new probabilistic context-free grammar model, offspring-
annotated PCFG in which the grammar variables are specialized by annotating
themn with the subtree they generate up to a certain level. In particular, we have
studied child-annotated models (one level) and have compared their parsing
performance to that of unannotated PCFG and of parent-annotated PCFG [4].
Offspring-annotated models may be seen as a special case of a very general
probabilistic state-based model, which in turn is based on probabilistic bottom-
up tree automata. The experiments show that:
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— The parsing performance of parent-annotated and the proposed child-annotated
PCFG is similar.

- Parsers using child-annotated grammars are, however, much faster because
the number of possible parse trees considered is drastically reduced; this is,
however, not the case with parent-annotated models.

- Child-annotated grammars have a larger number of parameters than parent-
annotated PCFG which may make it difficult to estimate them accurately
from currently available treebanks.

~ Child-annotated models tend to give very structured and refined parses
instead of flat parses, a tendency not so strong for parent-annotated gram-
mars.
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