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Abstract. The aim of this research is to automatically tuning a good
fuzzy partition, i.e. determine the number of classes of each system vari-
able, in the context of the Fuzzy Inductive Reasoning (FIR) methodol-
ogy. FIR is an inductive methodology for modelling and simulate those
systems from which no previous structural knowledge is available. The
first step of FIR methodology is the fuzzification process that converts
quantitative variables into fuzzy qualitative variables. In this process it
is necessary to define the number of classes into which each variable is
going to be discretized. In this paper an algorithm based on simulated
annealing is developed to suggest a good partition in an automatic way.
The proposed algorithm is applied to an environmental system.

1 Introduction

The Fuzzy Inductive Reasoning (FIR) methodology emerged from the General
Systems Problem Solving (GSPS) developed by Klir [1]. FIR is a data driven
methodology based on systems behavior rather than structural knowledge. It
is a very useful tool for modelling and simulate those systems from which no
previous structural knowledge is available. FIR is composed of four main pro-
cesses, namely: fuzzification, qualitative model identification, fuzzy forecasting,
and defuzzification. Figure 1 describes the processes of FIR methodology.

Fig. 1. FIR structure

The fuzzification process converts quantitative data stemming from the sys-
tem into fuzzy data, i.e. qualitative triples. The first element of the triple is the
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class value, the second element is the fuzzy membership value, and the third el-
ement is the side value. The side value indicates whether the quantitative value
is to the left or to the right of the peak value of the associated membership
function.

The model identification process is able to obtain good qualitative relations
between the variables that compose the system, building a pattern rule base that
guides the fuzzy forecasting process.

The fuzzy forecasting process predicts systems behavior. The FIR inference
engine is a specialization of the k-nearest neighbor rule, commonly used in the
pattern recognition field.

Defuzzification is the inverse process of fuzzification. It makes possible to
convert the qualitative predicted output into a quantitative variable that can
then be used as input to an external quantitative model. It has been shown in
previous works that FIR methodology is a powerful tool for the identification
and prediction of real systems, specially when poor or non structural knowledge
is available [2,5]. For a deeper insight into FIR methodology the reader is referred
to [4].

As can be seen in figure 1, for the fuzzification process of FIR methodology
to start it is necessary to define some external parameters, i.e. the partition
(number of classes of each system variable) and the landmarks (limits between
classes). The default value for the number of classes’ parameter for each system
variable is three and the equal frequency partition (EFP) is used as the default
method to obtain the landmarks of the classes. These default values have been
used in different applications obtaining usually good results. However, experience
has shown that in some them, i.e. biomedical and ecological, the determination
of the partition parameter needed in the fuzzification step becomes relevant for
the identification of a good model that captures systems behavior in an accurate
way. The automatic determination of a good partition as a pre-process of FIR
methodology is an interesting and useful alternative. To achieve this goal an
algorithm base on simulated annealing is presented in this paper and used in
an environmental application, i.e. prediction of ozone concentration in a specific
area of Mexico city. The algorithm proposed is introduced in section 2. In section
3 the ozone application is addressed and the results obtained discussed. Finally,
the conclusions of this research are given.

2 Simulated Annealing Algorithm

Simulated annealing is a generalization of a Monte Carlo method that was intro-
duced by Metropolis et al. in 1953 [3]. This technique is used to approximate the
solution of very large combinatorial optimization problems and is based on the
manner in which liquids freeze in the process of annealing [7]. In an annealing
process a melt, initially at high temperature and disordered, is slowly cooled so
that the system at any temperature is approximately in thermodynamic equilib-
rium. Cooling proceeds until the final temperature is reached, that corresponds
to the most stable (lowest energy) system state. If the initial temperature of the
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system is too low or cooling is not done sufficiently slowly the system may be
trapped in a local minimum energy state.

A simulated annealing algorithm consists of two nested loops. The outer-most
loop sets the temperature and the inner-most loop runs a Metropolis Monte Carlo
simulation at that temperature. The algorithm starts with an initial solution to
the problem, which is also the best solution so far and a value for an initial high
temperature. Each iteration consists of the random selection of a new solution
(called candidate solution from now on) from the neighborhood of the current
one. The cost function of the candidate solution is evaluated and the difference
with respect to the cost function value of the current solution is computed (δ
in equation 1). If this difference is negative, i.e. the cost function value of the
candidate solution is lower than the one of the current solution, the candidate
solution is accepted. If the difference is positive the candidate solution is accepted
with a probability based on the Boltzmann distribution (equation 1).

fBoltzmann(δ) = exp(−δ/k.T ) (1)

where T is the temperature value and k is the Boltzmann’s constant. The ac-
cepted candidate solution becomes the current solution and if its cost function
value is lower than the one of the best solution, this one is updated. If the candi-
date solution is rejected, i.e. the Boltzmann probability is less than the random
number generated, the current solution stays the same and it is used in the next
iteration. The temperature is lowered in each iteration down to a freezing temper-
ature where no further changes occur. The set of parameters that determine the
temperature decrement is called the cooling schedule. This parameters are the
initial temperature, the function that decrements the temperature between suc-
cessive stages, the number of transitions needed to reach the quasi-equilibrium
for each temperature value and the stop criterion.

The main aspects to be considered in a simulated annealing implementation
are: 1) solution configuration, 2) new solutions generation mechanism, 3) cost
function and 4) cooling schedule. These aspects, for the algorithm proposed in
this paper, are explained in detail next while the algorithm is shown in figure 2.
Solution Configuration
The solution should contain the number of classes for each variable. The config-
uration chosen is a vector with the same number of columns than the number of
system variables, containing integers in the range [2 · · ·maxNC]. maxNC the
maximum number of classes allowed.
New Solutions Generation Mechanism
Two options can be used to generate the initial partition, i.e. current solution.
The first one sets all the variables to 3 classes (default option in the current
FIR implementation). The second one corresponds to a random generation of
the number of classes for each system variable.

The procedure to generate a new solution, i.e. candidate solution, from the
current one is to increment or decrement by one the number of classes associated
to a certain system variable. The variable that is going to be modified is chosen
randomly from the vector of variables. The decision to increase or decrease the
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number of classes of this variable is also random. If the extremes are reached,
i.e. 2 or maxNC, it is enforced to apply the increment and decrement operators,
respectively.

Cost Function
An important aspect in this research is to define an appropriate cost function
for the evaluation of the partitions. To address this issue it is necessary to look
closer to the qualitative model identification processe of FIR methodology.

In the process of modeling, it is desired to discover the causal and tempo-
ral relations between the inputs and the output of the system, that make the
resulting state transition matrix as deterministic as possible. The more deter-
ministic the state transition matrix is, the higher is the likelihood that the future
system behavior will be predicted correctly. In FIR, the causal and temporal re-
lations among the fuzzy qualitative variables are represented by a mask matrix.
Equation 2 gives an example of a mask,




t\x i1 i2 i3 O

t − 2δt 0 0 0 −1
t − δt 0 −2 −3 0
t −4 0 0 +1


 (2)

where δt indicates the sampling period. A mask denotes a dynamic relation-
ship among qualitative variables. The negative elements represents the causal
relations between he inputs and the output (positive value in the mask). The
sequence in which they are enumerated is immaterial. In position notation the
mask of equation 2 can be written as (4, 6, 7, 9, 12), enumerating the mask from
top to bottom and from left to write.

A quality value, based on an entropy reduction measure, is computed for
each mask considered. In [4] the quality function is described in detail. The
mask with highest quality is called the optimal mask. It is important to note
that the optimality of the mask is evaluated with respect to the identification
(training) data set. Therefore, the best mask is not, necessarily, the one that
achieves the best forecast of the test data.

In this study the quality function that evaluates the information associated
to the mask is used as the cost function. In that way, no prediction is needed
in the partition evaluation process. Therefore, only the fuzzification and the
model identification processes of FIR methodology (see figure 1) are executed to
compute the cost function for a specific partition. This reduces considerably the
execution time of the simulated annealing algorithm proposed.

Cooling Schedule
Let us now take a look to all the parameters that conform the cooling sched-
ule. The initial temperature depends on the initial solution generated and it is
computed using equation 3,

T0 =
µ

− ln(Φ)
· Cost(S0) (3)
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where Cost(S0) evaluates the cost function of the initial solution (S0) and µ, Φ ∈
[0, 1] and their values depend on the number of variables of the application as
described in equation 4.

µ = 0.3, Φ = 0, 3 if N ≤ 3 µ = 0.1, Φ = 0, 1 if N > 3 (4)

Equation 4 says that initially it is possible to accept solutions µ per one worse
than the initial solution with a probability Φ.

Two different cooling functions are predominantly used, i.e. linear and pro-
portional. In this work, the proportional cooling function proposed by Kirpatrick
[7] is used to decrement the temperature between successive stages. This function
is presented in equation 5.

Tk+1 = α · Tk with α = 0.9 (5)

The number of transitions needed to reach the quasi-equilibrium for each tem-
perature is defined by means of two values, the maximum number of transitions
i.e. iterations in the inner loop and the maximum number of accepted solutions.
The maximum number of iterations is set to N3 and the maximum number of
accepted solutions is set to N2, being N the number of system variables.

Three stop criterions have been used in this study. The simulation anneal-
ing algorithm stops when the number of iterations is grater than the maximum
number of possible solutions (masxNCN ), the last iteration has finished with
no accepted solutions and/or N iterations have been completed without an en-
hancement of the global solution, i.e. the best solution is not changed during
the last N iterations. It is important to remark here that if the algorithm stops
due to the first criterion no advantage is obtained with respect to an exhaustive
search. Moreover, the annealing algorithm do not guarantee that the optimal
solution is found. The main algorithm is presented next.

function [BestSol] = Annealing (N,maxNC,data)

% A first solution (Current Solution) and an initial temperature (T) are
% generated. The evaluation of the cost function for the initial partition
% is also computed and stored in the CurrentSol structure
[CurrentSol,T] = GenerateCurrentSol(N,maxNC,data);

% The Current Solution is the Best Solution so far
BestSol = CurrentSol;

% The Current Solution is stored in the list of generated solutions
SolList = [CurrentSol];

% The total number of solutions generated is set to one
NumberSolutions = 1;

% Initialization of both the number of iterations without a global
% enhancement and the number of iterations without accepted solutions.
IterNoGlobalEnhance = 0;
IterNoAcceptedSol = 0; % boolean variable

% Loop that sets the temperature
while (NumberSolutions <= (maxNCˆN)) & (IterNoGlobalEnhance < N)

& (˜IterNoAcceptedSol),
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% Initialization of the boolean variable that establishes if a global
% enhancement has been produced, the number of accepted solutions and
% the number of iterations for the current temperature
GlobalEnhance = 0; % boolean variable
NumAcceptSol = 0;
NumIter = 0;

% Loop that runs the Metropolis Monte Carlo simulation
while (NumIter < Nˆ3) & (NumAcceptSol < Nˆ2),

% The number of iterations is incremented
NumIter = NumIter + 1;

% The GenerateCandidateSol function generates the Candidate Solution.
% If this solution is not in the list of generated solutions, evaluates
% its cost function and includes both values in the solution list. If the
% solution is already in the list (it has been generated one or more times
% in the past), the cost function is available and it is not computed again.
[CandidateSol,SolList] = GenerateCandidateSol(N,maxNC,CurrentSol,SolList,data);

% The total number of solutions generated is incremented
NumberSolutions = NumberSolutions + 1;

% The difference between the cost function of the Candidate Solution and
% the cost function of the Current Solution is stored in the Delta variable
Delta = CandidateSol.cost - CurrentSol.cost;

% Condition for the acceptance of the Candidate Solution
if (rand(1) < exp(- Delta/T)) | (Delta < 0)

% When accepted, the Candidate Solution becomes the Current Solution
CurrentSol = CandidateSol;
% The number of accepted solutions is incremented
NumAcceptSol = NumAcceptSol + 1;
% If the Current Solution has a lower cost function value than
% the one of the Best Solution, this one is actualized
if (CurrentSol.cost < BestSol.cost)

BestSol = CurrentSol;
GlobalEnhance = 1; % boolean variable

end;
end;

end;
% The temperature is decremented
T = alpha*T;

% The IterNoAcceptedSol and IterNoGlobalEnhance variables are actualized
% once the quasi-equilibrium is reached for the current temperature
IterNoAcceptedSol = (NumSolAcept == 0);
if GlobalEnhance

IterNoGlobalEnhance = 0;
else IterNoGlobalEnhance = IterNoGlobalEnhance + 1;
end;

end;
return

Fig. 2. Simulated Annealing algorithm for the automatic determination of fuzzy par-
titions in FIR methodology (Implemented in Matlab 6.5 languaje)
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3 Ozone Concentration

The main air pollution problem that has been identified in Mexico city metropoli-
tan area (MCMA) is the formation of photochemical smog, primarily ozone (O3).
High levels of ozone causes eye irritation, respiratory disorders, crop damage and
increased deterioration rate of material. In these circumstances, it is important
and useful to provide early warnings of high levels of ozone concentration so
that the authorities can react as fast as possible. Therefore, the construction of
ozone models that capture the behavior of this gas in the atmosphere as pre-
cisely as possible is of interest not only for environmental scientists but also
for government agencies. There are many different models available for local
scale predictions of air quality and for ozone level forecasting. In recent years
paradigms such as neural networks [8], decision trees or association rules [9] have
been used for this purpose. In [6], FIR methodology has been used to model the
ozone contaminant in the centre region of the Mexico city. Seven variables are
involved in this study. The input variables are hour of day hd (from 0 to 23),
day of week dw (from 1 to 7), wind speed ws, measured in meters per second
(m/s), wind direction wd, measured in degrees (from 0◦ to 359◦), temperature
t, measured in ◦C and relative humidity hu, measured in percentage (from 0%
to 100%). The ozone o3 (measured in parts per million (PPM)), is the system’s
output variable. Ozone and weather data were available from January to May
2000 and contain missing values. The data of the first four months is used as
identification data set, whereas the month of May is used as test data set. The
mean square error in percentage (MSE) is used to determine the validity of each
of the models.

In [6] three different partitions have been studied to find the model with
the best prediction performance. The best optimal mask found, performing an
exhaustive search, for the three partitions studied are presented in the first three
rows of the table 1.

Table 1. Partitions results obtained by the previous work (first three rows) and the
Simulated Annealing algorithm (las three rows)

Partition Optimal Mask Quality MSE test
hd dw ws wd t hu o3

(3, 3, 3, 3, 3, 3, 3) (1,14,21) 0.595 52.08%
(5, 5, 4, 5, 4, 4, 4) (4,14,17,21) 0.537 145.7%
(6, 6, 2, 3, 3, 4, 2) (1,14,21) 0.738 39.36%
(3, 2, 6, 4, 6, 5, 2) (1,14,17,21) 0.736 34.90%
(3, 3, 4, 2, 4, 2, 2) (1,14,17,21) 0.763 38.33%
(3, 2, 5, 2, 3, 2, 2) (1,14,17,21) 0.757 38.45%

In table 1, the first column contains the number of classes for each vari-
able (partition). The second column describes the optimal mask associated to
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that partition, in position notation. The third column contains the quality of
the optimal mask, i.e. the cost function in the simulated annealing algorithm
proposed. The last column contains de MSE prediction error of the test data
set. The last 3 rows shows the partitions proposed by the simulated annealing
algorithm when running it several times (more than 20). As can be observed
from table 1 the partitions chosen by ”hand” in the previous work have lower
quality and performance than the partitions suggested by the simulated anneal-
ing algorithm. The partitions recommended by the SA algorithm have similar
qualities and performances, and any of them can be used as a good partition
parameter in the fuzzification process of FIR methodology. To chose a partition
without previous criterion is a big risk that the modeler can avoid by using the
SA algorithm presented. Clearly, the SA algorithm is a very useful tool that
allows the modeler start using FIR in a more efficient way.

4 Conclusions

In this paper, a simulated annealing algorithm for the automatic tuning of fuzzy
partitions in the context of the fuzzy inductive reasoning methodology has been
presented. The SA algorithm suggests, for each variable, the number of classes
to be discretized, basing its decision on the quality of the best mask associated
to that partition. The use of the SA algorithm for the modeling of the ozone
contaminant in Mexico city shows the potentiality of this approach.
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