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Abstract. Morphological associative memories (MAMs) use a lattice
algebra approach to store and recall pattern associations. The lattice
matrix operations endow MAMs with properties that are completely dif-
ferent than those of traditional associative memory models. In the present
paper, we focus our attention to morphological bidirectional associative
memories (MBAMs) capable of storing and recalling non-boolean pat-
terns degraded by random noise. The notions of morphological strong
independence (MSI), minimal representations, and kernels are extended
to provide the foundation of bidirectional recall when dealing with noisy
inputs. For arbitrary pattern associations, we present a practical solution
to compute kernels in MBAMs by induced MSI.

1 Introduction

The foundation of morphological associative memories was established in [9],
where it was proved that morphological auto-associative memories have unlim-
ited storage capacity and provide perfect recall for noncorrupted boolean inputs
in comparison with traditional associative memories based on correlation encod-
ing such as the classical Hopfield auto-associative memories [3,6]. Correlation
encoding requires that the key vectors are orthogonal in order to exhibit perfect
recall of the fundamental associations [1,4]. The morphological auto-associative
memory does not restrict the domain of they key vectors in any way. Thus, as
many associations as desired can be encoded into the memory; one step con-
vergence and perfect recall of boolean noisy patterns using the idea of kernels
were also settled [9]. Furthermore, the theoretical framework for morphologi-
cal bidirectional associative memories, developed in [10], showed again, that for
some binary pattern classes, MBAMs have large storage capacity and superior
bidirectional recall than traditional BAM models [5] and also competitive with
other feedforward BAM networks [15]. A characterization of kernel vectors for
binary patterns that provided for a direct method for kernel computation as
well as bounds for the allowable amount of corruption of the exemplar patterns
that guarantee perfect recall appeared in [13]. An additional development that
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uses the notion of dual kernels to enhance the error correction capability of bi-
nary auto-associative morphological memories has been introduced in [14]. By
redefining the notion of kernels, together with new concepts such as morpholog-
ical strong independence and minimal representations of exemplar non-boolean
patterns, MAMs were shown to be robust in the presence of noise [11,12].

Our work is organized as follows: Section 2 gives a brief background of lattice
matrix operations for dealing with MAMs, and Section 3 provides an overview
of the main results obtained from previous research on MAMs, where greyscale
image pattern associations are used to illustrate their performance. Section 4
presents the known theoretical results related to MBAMs for non-boolean pat-
terns including the kernel methodology for storing and recalling associations
based on the notions of morphological strong independence (MSI) and minimal
representations. Section 5 presents a new procedure for the computation of ker-
nels by induced MSI. Finally, in Section 6 we give our conclusion to the research
presented here.

2 Lattice Matrix Algebra

Lattice matrix operations are defined componentwise using the binary operations
of the bounded lattice-group algebraic structure of IR±∞ = IR∪{−∞, +∞} [2,8].
The binary operators for the maximum or minimum of two numbers are denoted
with the “join” and “meet” symbols employed in lattice theory, i.e., x ∨ y =
max(x, y) and x ∧ y = min(x, y). For example, the maximum of two matrices
A, B of the same size m×n is defined as (A∨B)ij = aij∨bij , for all i = 1, . . . , m
and j = 1, . . . , n. Inequalities between matrices are also verified elementwise,
e. g., A ≤ B if and only if aij ≤ bij . On the other hand, the conjugate matrix A∗

is defined as −At where At denotes usual matrix transposition, or equivalently,
(A∗)ij = a∗

ji, hence (A ∨ B)∗ = A∗ ∧ B∗. In addition, for appropriately sized
matrices A, B, the ijth entry of the max-sum and the min-sum of A and B, is
defined respectively, for all i = 1, . . . , m and j = 1, . . . , n, as follows

(A∨B)ij =
p∨

k=1

(aik + bkj) and (A∧B)ij =
p∧

k=1

(aik + bkj) , (1)

where, e. g.,
∧p

k=1 ak is the minimum of the set of numbers {a1, . . . , ap}.
The relationship (A∨B)∗ = B∗∧A∗ holds for any A, B, and establishes the

duality between both types of lattice matrix sums. Finally, the morphological
outer sum of two vectors x ∈ IRn and y ∈ IRm, is given by the m × n matrix
(note that y ⊕ xt = y ∨xt = y ∧xt)

y ⊕ xt =




y1 + x1 · · · y1 + xn

...
. . .

...
ym + x1 · · · ym + xn



 . (2)
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3 Morphological Associative Memories

For a given set of pattern associations {(xξ,yξ) ∈ IRn × IRm : ξ = 1, . . . , k} we
define a pair of associated pattern matrices (X, Y ), where X = (x1, . . . ,xk) and
Y = (y1, . . . ,yk). Thus, X is of dimension n×k with i, jth entry xj

i and Y is of
dimension m×k with i, jth entry yj

i . To store k vector pairs (x1,y1), . . . , (xk,yk)
in an m× n MAM we use the morphological outer sum as follows [9]. The min-
memory WXY and the max-memory MXY, that store a set of pattern associations
(X, Y ) are given, respectively, by the expressions

WXY = Y ∧X∗ =
k∧

ξ=1

[yξ ⊕ (−xξ)t] or wij =
k∧

ξ=1

(yξ
i − xξ

j) , (3)

MXY = Y ∨X∗ =
k∨

ξ=1

[yξ ⊕ (−xξ)t] or mij =
k∨

ξ=1

(yξ
i − xξ

j) . (4)

We speak of a hetero-associative morphological memory (HMM) if X �= Y and
an auto-associative morphological memory (AMM) if X = Y . From (2), for each
ξ, yξ × (−xξ)t is a matrix Aξ of size m× n that memorizes the association pair
(xξ,yξ), hence WXY =

∧k
ξ=1 Aξ and MXY =

∨k
ξ=1 Aξ, which suggests the given

names. We use wij and mij as an alternative notation for the ijth entries of WXY
and MXY if there is no confusion about which association is under discussion.
Since, M∗

YX = (X∨Y ∗)∗ = Y ∧X∗ = WXY and W ∗
YX = (X∧Y ∗)∗ = Y ∨X∗ =

MXY, the retrieval of pattern yξ from pattern xξ can be expressed using the
direct memory schemes (the vertical bar means “or”),

xξ → {WXY |MXY} → yξ , (5)

where either one of WXY or MXY or their corresponding duals may be used. In a
similar fashion, WYX = M∗

XY and MYX = W ∗
XY, hence recalling the pattern xξ

from pattern yξ can be realized using the conjugate or reverse memory schemes,

yξ → {WYX |MYX} → xξ . (6)

The conditions of perfect recall for perfect input were established in [9] and we
repeat them here for convenience. Specifically, WXY∨X = Y or MXY∧X = Y ,
if and only if, for each row index i ∈ {1, . . . , m} and each pattern index γ ∈
{1, . . . , k}, there exists an index j ∈ {1, . . . , n} which depends on i, γ, such that

yγ
i − xγ

j = wij or yγ
i − xγ

j = mij . (7)

It is important to remark that, the conditions for perfect recall using MAMs
may not be satisfied for arbitrary association pairs (X, Y ), with X �= Y , that
arise in most practical applications. However, even in the case that for each
pattern xγ several row indexes do exist for which the expressions in (7) are
not satisfied, the memories WXY and MXY still provide a storing mechanism
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with almost perfect recall, in the sense of a suitable distance measure, between
the original pattern yξ

o and the recalled pattern yξ
r. In particular, we use the

normalized mean square error (NMSE), denoted by ε(yξ
o,y

ξ
r), to quantify the

difference between yξ
o and yξ

r, when recalling stored patterns by means of a
specific hetero-associative memory scheme. The following example involving non-
boolean patterns of high dimensionality illustrates our claim.

Consider the five pattern image associations (p1, q1), . . . , (p5, q5) shown in
Fig. (1). Each individual pattern pξ or qξ is a 50 × 50 pixels 256-gray scale
image. For uncorrupted input, almost perfect recall is obtained if we use ei-
ther of the memory schemes given by (5) or (6). Using the standard row-scan
method, each pattern image, e.g., pξ can be converted into a pattern vec-
tor xξ = (xξ

1, . . . , xξ
2500) ∈ IR2500 of X by defining, xξ

50(r−1)+c = pξ(r, c) for
r, c = 1, . . . , 50 (pattern vector qξ is similarly defined for yξ of Y ). Figure 2
shows the results when applying the memory scheme of (5) using the canonical
memories WXY and MXY. A visual inspection does not reveal immediately the
hidden differences that cause the recall to be non-perfect since ε(yξ

o,y
ξ
r) ≈ 10−4

for ξ = 1, . . . , 5. Although, for a given arbitrary set (X, Y ) of pattern associa-
tions, the HMMs, WXY (or WYX) and MXY (or MYX) are not necessarily perfect
recall memories, they still can be applied successfully to deal with noisy inputs.

Fig. 1. The association (X, Y ) that was used in constructing the memories WXY and
MXY (of size 2500 × 2500). First row: patterns of X; second row: patterns of Y

4 MBAMs and the Kernel Method

From [10], the conjugate morphological memories, MYX = W ∗
XY and WYX =

M∗
XY, also denoted by W ∗ and M∗, perform the feedback scheme for bidirectional

recall in a MBAM. The basic association mechanisms for perfect input in the X
to Y direction are given by the following one-step procedure without thresholding

xξ → {WXY |MXY} → yξ → {MYX |WYX} → xξ . (8)
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Fig. 2. The first row displays the associated Y patterns as recalled by the memory
WXY; the second row displays the associated Y patterns as recalled by the memory
MXY

Again, conditions for perfect recall in MBAMs must satisfy relations similar
to (7) (for MAMs) in both the forward and feedback paths for the memories
involved. Even if perfect recall can not be accomplished, MBAMs allow for heavy
overlap of features as was demonstrated in [10] using boolean patterns.

We now turn our attention to noisy patterns. Let I = {1, . . . , n}, a distorted
version x̃γ of the pattern xγ has undergone an erosive change whenever x̃γ ≤ xγ

or equivalently if ∀i ∈ I, x̃γ
i ≤ xγ

i . A dilative change occurs whenever x̃γ ≥ xγ

or equivalently if ∀i ∈ I, x̃γ
i ≥ xγ

i . Let L, G ⊂ I be two non-empty disjoint sets
of indexes; if ∀i ∈ L, x̃γ

i < xγ
i and ∀i ∈ G, x̃γ

i > xγ
i , then the distorted pattern

x̃γ is said to contain random noise. In order to deal efficiently with corrupted
versions of exemplar patterns, the kernel method has proven to be useful in the
binary case for MAMs [9,13] and MBAMs [10]. Here, we will extend the kernel
technique in MBAMs to store and recall non-boolean pattern associations.

The underlying idea of the kernel technique is to define a memory M which
associates with each input pattern xγ an intermediate eroded pattern zγ called
the kernel pattern. Another associative memory W is defined which associates
each kernel pattern zγ with the desired output pattern yγ . In terms of min-max
sums, one obtains the equation, W ∨ (M ∧xγ) = yγ . The combination of the two
morphological memories M and W is what motivated the following definitions
and results (proved in [12]); for application purposes we assume that pattern
features are non-negative, i.e., xγ

i ≥ 0 for all i, γ.

Definition 4.1. Let Z = (z1, . . . ,zk) be an n× k matrix. We say that Z is a
kernel for (X, Y ) with X �= Y , if and only if Z �= X and there exists a memory
W such that W ∨ (MZZ ∧xγ) = yγ .

Definition 4.2. A set of patterns Z ≤ X is said to be a minimal representation
of X if and only if for γ = 1, . . . , k, zγ ∧ zξ = 0 ∀ξ �= γ, zγ contains at most
one non-zero entry, and WZX ∨ zγ = xγ .

Definition 4.3. A set of pattern vectors X is said to be morphologically strongly
independent (MSI) if and only if, ∀ξ �= γ, the next two conditions are satisfied:
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1. ∀γ ∈ {1, . . . , k},xγ � xξ,
2. ∀γ ∈ {1, . . . , k}, there ∃ jγ ∈ {1, . . . , n} such that

xγ
i − xξ

i ≤ xγ
jγ
− xξ

jγ
, ∀i ∈ {1, . . . , n} . (9)

Theorem 4.1. If X is morphologically strongly independent, then there exists
a set of patterns Z ≤ X with the property that for γ ∈ {1, . . . , k}
1. ∀ξ �= γ,zγ ∧ zξ = 0
2. zγ contains at most one non-zero entry, and
3. WXX ∨ zγ = xγ .

Corollary 4.1. If X and Z are as in Theorem 4.1, then Z is a minimal repre-
sentation of X.

Corollary 4.2. If X and Z are as in Theorem 4.1 and WXY is a perfect asso-
ciative recall memory, then Z is a kernel for (X, Y ) with W = WXY ∨ WXX.

It is clear, from Corollary 4.2, that the recall mechanism in MBAMs is given by
the following feed-forward network

xξ →MZZ →W → yξ →MVV →W ′ → xξ , (10)

where, W = WXY ∨ WXX, W ′ = WYX ∨ WYY, and V is a kernel for (Y, X).
The conditions that, WXX ∨ zγ = xγ and WYY ∨ vγ = yγ are crucial for
the recall capability of the memory scheme of (10) when presented with noisy
inputs. Given a pair of minimal representations Z, V which are also kernels,
respectively, for (X, Y ) and (Y, X), and a noisy version (x̃γ , ỹγ) of the pat-
tern association (xγ ,yγ) having the property that (zγ ,vγ) ≤ (x̃γ , ỹγ) and
(MZZ ∧ x̃γ , MVV ∧ ỹγ) ≤ (xγ ,yγ), then it must follow that

WXX ∨ (MZZ ∧ x̃γ) = xγ and WYY ∨ (MVV ∧ ỹγ) = yγ . (11)

Although the performance of the proposed feed-forward MBAM network when
presented with noisy inputs can not be assured in a completely deterministic
way, for any set (X, Y ) of k associated patterns in IRn× IRm, the expectation of
recall capability is enhanced if min(n, m)� 0 and k � min(n, m).

5 Computation of Kernels

From a theoretical point of view, Theorem 4.1 and its corollaries provide the
foundation for the kernel method when applied to perfect inputs. In addition, the
combined memory scheme suggested by (10) together with the kernel association
shown in (11) provide a useful mechanism for bidirectional pattern recall of noisy
inputs. On the other hand, it is clear that the condition of morphological strong
independence of the sets X and Y will be rarely satisfied in practical situations
and seems to be very restrictive in its possible applications. A practical solution
to this dilemma is given by the following procedure.
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Algorithm 5.1. [MBAM kernels by induced MSI.]

Step 1. Compute the global maximum U , and the global minimum L of the in-
put set X that has k patterns of dimension n, i.e., U = max(X) =

∨n
i=1

∨k
ξ=1 xξ

i

and L = min(X) =
∧n

i=1
∧k

ξ=1 xξ
i .

Step 2. Let I = {1, . . . , n}. For ξ = 1, . . . , k, compute an index iξ ∈ I where
the first available maximum value occurs, i.e., let xξ

iξ
=

∨
i∈I xξ

i , I = I − {iξ},
ξ = ξ + 1, and recompute xξ

iξ
for the new pattern xξ, hence ∀γ �= ξ, iγ �= iξ.

Step 3. Change the original pattern set X, at all positions iξ for ξ = 1, . . . , k

with the U and L values determined in Step 1. Specifically, set xξ
iγ

= U if γ = ξ

otherwise set it to L. It turns out, that the modified pattern set, denoted by X̂,
is a morphologically strongly independent set.

Step 4. Apply to X̂ the kernel method and the morphological memory scheme
as described in Section 4. The kernel Z of X̂ is readily obtained from Step 3, by
defining for i = 1, . . . , n and ξ = 1, . . . , k, zξ

i = U if i = iξ otherwise set it to 0.

Step 5. Repeat Steps 1–4 for set Y to find the kernel V of Ŷ . In this final
step, a two way kernel (Z, V ) has been determined for (X, Y ).

To complete the description of Algorithm 5.1, we next prove that set X̂
(similarly for Ŷ ) satisfies both conditions for MSI of Definition 4.3:

1. ∀γ ∈ {1, . . . , k}, xγ � xξ for all ξ �= γ; that is, an index jγ ∈ {1, . . . , n}
exists such that xγ

jγ
> xξ

jγ
for all ξ �= γ. That this is true, follows immediately

from the assignment made in Step 3 by making the choice, jγ = iγ .
2. ∀γ ∈ {1, . . . , k}, there is an index jγ ∈ {1, . . . , n} such that, ∀i ∈ {1, . . . , n},

xγ
jγ
− xξ

jγ
� xγ

i − xξ
i ; take again, jγ = iγ , therefore

U − L =
∨n

i=1(x
γ
i − xξ

i ) � xγ
i − xξ

i ��

Essentially, the kernel computation suggested in Algorithm 5.1, introduces an
alternative MBAM scheme that substitutes (10), as follows,

xξ → x̂ξ →MZZ →WX̂X̂ →WX̂Y → yξ

xξ ←WŶX ←WŶŶ ←MVV ← ŷξ ← yξ , (12)

where, the recollection mechanism is based on the modified pattern sets X̂, Ŷ
rather than the original X, Y sets. Observe that induced MSI introduces a neg-
ligible amount of deterministic “artificial noise” to the original patterns which
does not affect the MBAM performance if min(n, m)� 0 and k � min(n, m).
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6 Conclusion

Several key steps have been achieved for enhancing the recall capability as well
as the error correction rate of morphological associative memories in the case
of boolean patterns. However, the kernel technique in the non-boolean case has
required more elaborate concepts to deal effectively with corrupted inputs. Mor-
phological strong independence is a sufficient condition for building minimal
representations and kernels; however, in most practical applications, the associ-
ation pattern sets may not satisfy this requirement. Therefore, at the expense of
reducing storage capacity, the induced MSI procedure presented here is useful
for generating a two way kernel in a MBAM that is quite robust to random noise
for arbitrary non-boolean associations.
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