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Abstract. In the literature of computer vision and image processing,
motion estimation and image registration problems are usually formu-
lated as parametric fitting problems. Least Squares techniques have been
extensively used to solve them, since they provide an elegant, fast and
accurate way of finding the best parameters that fit the data. Never-
theless, it is well known that least squares estimators are vulnerable to
the presence of outliers. Robust techniques have been developed in order
to cope with the presence of them in the data set. In this paper some
of the most popular robust techniques for motion estimation problems
are reviewed and compared. Experiments with synthetic image sequences
have been done in order to test the accuracy and the robustness of the
methods studied.

1 Introduction

Motion estimation and image registration are important problems in computer
vision, and much effort has been paid to solve them. Video compression, video
processing, image mosaicing, video surveillance, robot navigation, medical imag-
ing, traffic monitoring, ..., are only some of the many applications where motion
estimation and image registration techniques can be applied. In the literature
of computer vision and image processing there are different approaches to mo-
tion estimation, nevertheless, there are still challenging open problems to make
solutions faster, more robust and accurate, or more general.

The motion estimation problem can be formulated in many different ways. A
well known way of solving it, is to approach it as a parametric fitting problem,
where the parameters to be fitted are the motion parameters. Least squares
provides a well-known way for parameter estimation. In general problems, least
squares methods are based on finding the values for the parameters y that best
fit a model to a set S of r data measurements, i.e. minimizing an objective
function O over a set S of  observations vectors, S = {L1,...,L,}.
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where x = (x!,...,xP) is a vector of p parameters and L; is a vector of n
observations L; = (L}, ... , L), i=1,...,r.

Least squares estimators assume that the noise corrupting the data is of
zero mean and implicitly assume that the entire set of data can be interpreted
by only one parameter vector of a given model. It is well known that least
squares estimators are vulnerable to the violation of these assumptions. Robust
techniques have been developed in order to cope with the presence of outliers in
the data set.

One of the oldest robust method used in image analysis and computer vision
is the Hough transform. The Hough transform is robust to outliers and it can
be used to detect multiples models, but it attempts to solve a continuous problem
with a discrete method and consequently it can not produce accurate results.
In addition, this algorithm needs high computational effort when the number of
parameters is elevate, as in the case of using an affine model in motion estimation
problems.

Another popular robust technique is the Least Median of Squares
(LMedS) method, which must yield the smallest value for the median of squares
residuals computed for the entire data set. The use of the median ensures that the
estimates is very robust to outliers. The main drawback is that LMedS does not
have a closed form solution. There are methods that can obtain an approximate
solution, but they need high computational effort. Therefore, the computational
complexity of LMedS algorithms does not allow them to be used in global motion
estimation problems. Nevertheless they can be used to obtain an initial estimate
of the parameters of the dominant motion (see [1]).

The Regression Diagnostics or outlier rejection method [5] tries to
iteratively detect possibly wrong data and reject them through analysis of the
globally fitted model. This method has three steps: determine an initial fit to
the whole set of data, using a ordinary least squares estimator; reject all data
whose residuals exceed a threshold; determine a new fit with the remaining data
set, and repeat. The success of this method clearly depens on the quality of
the initial fit. Many improvements can be added to this method. For instance,
estimate the initial fit using robust statitistics [3] or add an additional step that
collect inliers between the outliers previously rejected [4].

Robust statistics, also called M-Estimators, is one of the most popular
robust techniques. M-Estimators try to reduce the effect of outliers by repacling
the square residuals in Equation [l by a kernel function p, as follows:

0= ple, (2)
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where p(¢;) is a symmetric, positive-definite function with a unique minimum
at zero and ¢; = F(x, L;). If p(e;) = €2, it is the least square estimator. To
analyze the behavior of an estimator, the Hampel influence function ¢ (e) = 6%—(;)
can be used. For least squares estimator ¢(e) = 2, i.e. the influence of the
outliers increases linearity and without bound. For a comprehensible study of

the performance of M-Estimators see [8]. In order to solve the robust estimation
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problem an iterative reweighted least squares (IRLS) technique is used. The idea
of the IRLS is to assign weights w; to the residuals at each observation L;, where
the weights control the influence of the observations in the global estimation.
High weights are assigned to “good” data and lower heights to outlying data.
The M-Estimator problem is converted into a equivalent weighted least squares

problem as follows:
Z ple;) = Z wie?. 3)
L;es L;eS

To minimize we derivate both sides and set them equal to zero, then the
following expression is obtained for each w;:

€
€;

Gradient weighted least squares (GWLS) []] techniques can be also used
in order to achieve robustness to outliers. GWLS technique divides the original
function by its gradient with respect to the observation in order to obtain a
constant variance function. The solution of the GWLS problem can be also
obtained using a IRLS technique replacing the weight function by:

w; — ! . (5)
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In real motion estimation problems many of the previous robust techniques
can be combined in order to deal with their problems. For instance, in [3] robust
statistics, Hough transform and outlier rejection techniques are combined; in
LMedS and outlier rejection techniques are combined.

In this paper, four robust motion estimation algorithms are compared, three
of them use a linear least squares estimator in order to estimate the motion
parameters, and each of them make use of a different robust technique in order
to cope with outliers: M-Estimators, Gradient Weighted and Outlier Rejection.
These algorithms are explained in the Section [2:1] The last algorithm uses a
non-linear least squares estimator and a gradient weighted-based technique to
cope with outliers. It is explained in the Subsection Experiments with syn-
thetic image sequences have been done in order to show the performance of the
algorithms explained. They are shown in the Section Bl

2 Robust Motion Estimation Algorithms

In motion estimation problems, the objective function O is based on the assump-
tion that the grey level of all the pixels of a region R remains constant between
two consecutive images in a sequence (Brightness Constancy Assumption). Using
the BCA the objective function is expressed as follows:

Opca=», (L(@),y) — L(wi,y)), (6)
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where Iy (z},y}) is the grey level of the first image in the sequence at the trans-
formed point z,y;, and Is(x;,y;) are the grey level of the second image in
the sequence at point z;,y;. Here, for each point i (i = 1...r, with r being
the number of pixels) the vector of observations L; has three elements (n = 3),
L; = (x;,9i, I2(x;, y;)). The vector of parameters x depends on the motion model
used.

The BCA can not be directly used using an ordinary least squares (OLS)
technique since it is not linear. The well-known solution to this problem derives
the optic flow equation as the function to be minimized. Using the optic flow
equation the objective function is expressed as follows:

Oor =Y (Ii+ugly +uyl,)? (7)
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where I,,I, and I; are the spatial and temporal derivates of the sequence.

Nevertheless, it is possible to directly use the BCA using a non-linear least
squares-based estimator. Generalized least-squares methods (GLS) [4] are an
interesting approach to extend the applicability of least-squares techniques (e.g.,
to non-linear problems). GLS techniques can be successfully applied in motion
estimation related problems [6l7].

2.1 OLS-Based Robust Motion Estimation Algorithms

Motion Estimation. The solution of the motion estimation problem using an
ordinary least squares method uses Taylor series expansion that produces the
well know optic flow equation. The solution of Opr (Equation[7) is now obtained
setting to zero the derivates with respect to each of the parameters of the motion
model, and solving the resulting system of equations. The solution is obtained
by solving the overdetermined linear equation system Ax = d using the closed
solution y = (A*A)~1Ad, where for affine motion y is x = (a1, b1, c1,az, ba, c2),
and A (r x 6) and d (r x 1) are expressed as follows:

A= (A1, Ay, A)T d=(dy,dy,....d)"

Ai = (@l gL, Lowly, yly, L) gy di = @l +yLy — 1) ) (8)

The OLS-based motion estimation is accurate only when the frame-to-frame
displacements due to the motion are a fraction of pixel. The accuracy of the
estimation can be improved using an iterative alignment procedure and a multi-
resolution pyramid, see [2] for details. We will refer to this algorithm as Hierar-
chical and Incremental Ordinary Least Squares (HIOLS). In order to cope with
outliers a IRLS-based technique is used. For the sake of clarity, the IRLS process
is described in 4 steps:

1. Create a diagonal matrix of weights W with dimensions r x r. Each w;
measures the influence of the observation L; in the global estimation. Set all
w; = 1.
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2. Estimate the motion parameters using the equation: y = (ATWA)"1ATWd.
3. Improve the weights using the parameters previously estimated.
4. Repeat until some termination condition is met.

This process is integrated in the HIOLS algorithm improving the weights after
each parameter estimation is performed. Three robust techniques are studied: M-
Estimators (R-HIOLS algorithm), Gradient Weighted-based (GW-HIOLS) and
Outlier Rejection (OR-HIOLS).

R-HIOLS. The weights are calculated using the Huber M-Estimator as follows:

(10 i el <k .
WIE i el >k )

GW-HIOLS. The weights are calculated using the Equation

OR-HIOLS. In the outlier rejection technique the outliers do not have influence
in the estimation of the parameters. Now, the weight are set to 1 for inliers and
to 0 for outliers. The threshold is calculated using a scale measure s(x) based
on the median of the residual as follows:

s(x) = 1.4826 * median(|e; — median(e;)]). (10)

The scale estimated is used to reject outliers. w; = 0 if ¢; > s(x), i.e. the
observation 7 is considered as outlier. On the other hand, it is considered as inlier
and w; = 1. Other similar scale measures can be used ([1], [4]).

2.2 Generalized Least Squares

The Generalized Least Squares (GLS) algorithm is based on minimizing an
objective function O (see Equation [[) over a set S of r observation vectors,
S = {L1,...,L.}. In general, this equation can be non-linear, but it can be
linearized using the Taylor expansion and neglecting higher order terms. This
implies that an iterative solution has to be found. At each iteration, the algo-
rithm estimates Ay, that improves the parameters as follows: x;11 = x¢ + Ax.
The increment Ay is calculated (see [4]) using the following expressions:

Ax = (AT(BBT)"'A) " AT(BBT)'W  w; = —Fi(x1, L)
B_ (aFi(XtaLi) aFi(XtaLi)> A— (aFi(XtaLi) 8F1(Xt7Li)>
(1xn) (1xp)
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In our motion estimation problems the objective function is Ogca (see Equa-
tion ). Here, for each point 4 (i = 1...7, with r being the number of pixels) the
vector of observation L; = (x;,y;, I2(x;, y;)) has three elements (n = 3): column,
row and grey level of second image at these coordinates. The affine motion model
is used in this work, which is able to cope with translations, scaling, rotation
and shear of images and it is defined with a vector of x = (a1, b1, ¢1, ag, ba, ¢2),
(p = 6). Therefore, B;, A; and w; are expressed as follows:

B = (axly +azly — I3, b1 Iy +baly =I5, =1.0) | o

12
A= (ol I 1) = — () — D)
where I, IZ}, are the gradient of first image at the pixel (z},y}) in = and y
direction, and 12, 15, are the gradient of second image at the pixel (x;,y;) in x
and y direction.

Similarly to OLS estimator, a multi-resolution pyramid is used in order to
cope with large motion, but the iterative nature of the GLS estimator makes
unnecessary the use of the alignment process of the HIOLS algorithm. We name
this algorithm: Hierarchical Generalized Least Squares (HGLS) (see [7] for de-
tails). The robustness of the algorithm is obtained through the matrix BT B
which can be viewed as a matrix of weights. Clearly the HGLS algorithm uses a
gradient weighted-based technique in order to cope with outliers.

3 Experimental Work

In order to test the accuracy and robustness of the proposed methods two syn-
thetic experiments have been carried out. In the first experiment, 100 trans-
formed images have been created using random values of the affine parame-
ters between the limits: ay,by € [0.85,1.15], ag,b; € [0.0,0.15] and ¢1,co €
[—10.0,10.0]. The reference image and an example of a transformed image are
showed in Figure [[[a, b). Table [I] shows the averages of the differences be-
tween the real values and the estimated values for the affine parameters, for
each method.

Table 1. Error in the estimation of the motion parameters for the first experiment.

Algorithm [ ai [ by [ c1 [ as [ bo [ co

R-HIOLS [9.7E-07|1.3E-06{0.0001|9.8E-07(9.1E-07]0.0011
GW-HIOLS|2.8E-06{2.2E-06/0.0003|1.6 E-06|2.8E-06|0.0003
OR-HIOLS | 0.0002 | 0.0001 |0.0043|4.4E-06|6.0E-06|0.0013
HGLS 2.8E-05|3.9E-05(0.0052|7.9E-05|6.4E-05|0.0103

The second experiment have been done in order to test the robustness of
the algorithms. For this purpose, a patch of 150 x 150 pixels is added to the
reference image and a patch of 100 x 100 pixels is added to the transformed
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Fig. 1. Test image sequences: 1°* column, reference images, 2°" column, transformed
ones. 3" column, likelihood images: dark grey values for low likelihood, i.e. outliers

images. The patch undergoes a different motion than of the background. The
reference image and an example of a transformed image are showed in Figure[(d,
e). The averages of the differences between the real values of the background and
the estimated values are shown in Table[2l All the methods accurately extract the
motion of the background, i.e. the pixels belonging to the patch are considered

as outliers, and therefore, they have not influenced the estimation of motion of
the background.

Table 2. Error in the estimation of the motion parameters for the second experiment.

Algorithm | a1 | b1 [ er | a2 | b2 | e

R-HIOLS |1.8E-06|2.5E-06/0.0003|2.8E-06|1.2E-06|0.0003
GW-HIOLS|7.5E-05|4.8E-05|0.0069|1.4E-05|2.9E-05|0.0057
OR-HIOLS | 0.0002 | 0.0001 |0.0167|7.8E-05|6.5E-05|0.0079
HGLS 5.6E-05(5.1E-05(0.0065|6.7E-05|7.7E-05|0.0096

The results obtained for the experiments show that all methods obtain ac-
curate estimation of the motion parameters of the dominant motion present in
the sequence, even in the case of high number of outliers as in the second exper-
iments. No significant differences among the methods can be found. However,
the results show the benefits of using a HGLS technique since it can obtain es-
timates as accurate as the other methods and it is more general and simpler,
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mainly due to the fact that it does not need the alignment process, which can
introduce unexpected errors and can increase the processing time, specially in
the case of large images.
In order to illustrate how the outliers have been correctly rejected, a likeli-
hood image have been created. For each pixel, the likelihood measure L(x,p;) =
2

e "%*37 (see [3]) of the pixel p; belonging to the model estimated with pa-
rameters y is calculated. Light grey values are used to represent high values of
L(x,p;) in the likelihood image. On the other hand, dark grey values are used
for low values of L(y,p;), i.e. for outliers. Figures Mc,f) show an example of
the likelihood image for the samples of the experiments. They have been cre-
ated using the HGLS algorithm, but similar results would are obtained using
the other algorithms. They show how the outliers have been correctly detected
and rejected.

4 Conclusions

In this paper, four robust least squared-based motion estimation techniques have
been explained, implemented and compared. They use M-Estimators, gradient
weighted and outliers rejection techniques in order to achieve robustness in the
estimation of the motion parameters.

The performance of the four algorithms have been tested using synthetic
image sequences with the presence of outliers. The four methods obtain accurate
estimations of the dominant motion, even in the case of an elevate number of
outliers. No significant differences among the methods were found. However, the
results show the benefits of using a HGLS technique since it can yield estimates
as accurate as the other methods while it is more general and simpler, mainly
due to the fact that it does not need the alignment process which can introduce
unexpected errors and can increment the processing time, specially in the case
of large images.
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