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Abstract. Morphological neural networks consider that the information
entering a neuron is affected additively by a conductivity factor called synaptic
weight. They also suppose that the input channels account with a saturation
level mathematically modeled by a MAX or MIN operator. This, from a
physiological point of view, appears closer to reality than the classical neural
model, where the synaptic weight interacts with the input signal by means of a
product; the input channel forms an average of the input signals. In this work
we introduce some geometrical aspects of dendrite processing that easily allow
visualizing the classification regions, providing also an intuitive perspective of
the production and training of the net.

1   Introduction

Neural networks are today a computational alternative to solve problems where is
difficult or does not exist an algorithmic solution. Inspired on the functioning of the
nervous system, researchers have postulated different neural processing models.
     Recently, it has been found that information processing occurs also at dendrite
level and not only at the neuron body [4]. This could be an explanation of the
efficiency of the nervous system; due to the information processing practically occurs
on the communication channel. This with morphological paradigm is starting point of
this research.

1.1   Outline of the Paper

The remainder of the paper is organizes as follows. In Section 2, we briefly talk about
the related work with the present research. In Section 3, we describe the adopted
methodology to give a solution to the problem. In Section 4, we provide an example
to explain the functioning of the proposed methodology. Finally, in Section 5, we
conclude and give directions for future research.
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2    State of the Art

A neural network can be conceptualized as a non-linear mapping between two
pattern-spaces: the input pattern and the output pattern. Normally the internal
parameters of this mapping are determined by a training procedure and they are
called, in most cases, synaptic weights.
     In the decade of the 50’s Rosenblatt [1] introduces the Perceptron. This classical
model has served a basis of most of the actual developments.

3   The Adopted Methodology

3.1   Morphological Neural Processing

Morphological processing is based on the lattice algebra: ( )+∧,,R , where ∧ is the

MIN operator [2]. The main property of this algebraic structure is distributivity of
summation with respect to operator ∧, this is:

( ) ( ) ( )cabacba +∧+=∧+ (1)

     From the point of view of neural processing, Ritter [4] proposes a model of neuron
where the synaptic weights interact additively with the input signals; the dendrites
discriminate by taking into account the minimal value of the incident signals, (see
Figure 1).

Fig. 1. Model of a morphological neuron.

     In this model each branch can be of excitation or inhibition (excitation branches
end with a black circle). The output neuron might have several dendrites; the output
of each one of them can be negated or not.
     A fundamental difference with respect to the neuronal classical model is that in
morphological processing discrimination among input signals is done by taking into
account a threshold that depends on a min value. In the classical model a weighted
average of the inputs is taken. Since the physiological point of view it appears more
acceptable the threshold criteria, although the quality of the models, it what we want
to emulate is a biological process, only could be judged through the insights and
scientific experiments in the area.
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3.2   Dendrite Computation on Morphological Neurons

One of the contributions of the model described in Section 3.1 is the capacity to
accomplish processing practically over the same communication channel. In this case
the axonal branches can be of excitation or inhibition; only at the moment of contact
with the dendrite, just the MIN of the values remains, this is
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∈
Λ Lx l

iki
l

Ll

ω (2)

is the value that filters dendrite k, where ix  is the input and 1
ikω , 0

ikω  are the synaptic

excitation and inhibition weights, respectively.
     It is worth mentioning that, on this concept of distributed computing over the
communication channel, can be the key that explains the efficiency of the nervous
system, due to this model underlines the possibility that the fundamental processing of
information is not only executed at the cellular bodies.
     In summary, the morphological neural computing model with dendrite processing
has the following characteristics: We have several input neurons, one of output, the
output neuron can have several dendrites, each of the input neurons can excite or
inhibit the corresponding axonal branches, thus the result, y, of the output neuron is
computed as (see Figure 2):
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where ( )xkD  is the output of the k-th dendrite when pattern x is input. Each ( )xkD
is obtained as follows
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     Factor { }1,1 −∈kP . Classification function ( ) 1=xf  if and only if its argument

is greater o equal to one (on-region) and zero otherwise (off-region). Therefore, the
above-mentioned structure provides a solution to a binary classification problem.
     It is worth mentioning that the inhibition signal always carries a negative sign
independently of the sign of its corresponding synaptic weight.

Fig. 2. Morphological neural computing model.
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3.3   Geometric Approach of Dendrite Morphological Computation

In [4], it is enunciated and demonstrated a Theorem that is the base of the neural
morphological model with dendrite computation. In a few words this result tells us

that if nRX ∈  is a compact set of patterns, then there exists a morphological neural
net that classifies X as its on-region and its complements as its off-region.
     The above-mentioned Theorem comes together with an iterative algorithm that
allows determining; given a set X, the parameters of the morphological neural net. For
the details refer to [4].
     However, the geometrical counterpart of all the analytic and algorithmic
statements does not appears completely clear. Since a didactical point of view and of
the correct assimilation of the concepts it is desirable to develop until possible an
intuitive and geometrical idea of the formal aspects. It is worth mentioning that the
proposed intuitive geometrical vision is not only important for a better understanding
of the concepts, it will also allow to efficiently to develop a construction algorithm as
occurs with the analytical tools as we will next see.

a. To begin characterizing the geometrical approach, let us consider the effect
of the axonal branches over the dendrites:
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This expression is the intersection between two lines that cut axe ix  at - 1
ikω

and - 0
ikω , respectively (see Figure 3).

Fig. 3. Incidence of axonal branches over a dendrite.

In this case the firing region consists on the base of the triangle that is
formed when the lines intersect, the complement constitutes the off-region
(in the firing regions operator Λ takes positive or zero values; in the off-
region it takes negative values).

b. At each dendrite fall axonal branches from several input neurons; each of
them define an on or off-region; all of them interact according to the
following expression
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     Due to the intersection is given by operator Λ and each pair of axonal branches

corresponds to different axes ( )nixi ,,1�= , this makes that the firing conjoint

regions are formed with the Cartesian products of the corresponding firing regions at
each input (see Figure 4).

     When 1−=kP , the firing region becomes an off-region and vice versa. It is

important to note that the firing border frontier remains on, even when 1−=kP .

Fig. 4. Conjoint firing region.

     Finally, the computation of the output is done as:
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     This implies that the firing region of the net is the intersection of the regions of
each dendrite (Figure 5).

Fig. 5. Firing region of the morphological net.

     In short, the firing region of all the net, what is what we want to characterize, is
obtained by forming the firing regions (one for each input variable), by applying
Cartesians products between firing regions or their complements, to finally get in
general a hyper-rectangle as the firing region and its complement as the off-region.
All the involved parameters in the above process can be synthetisized in a table as the
one shown in Figure 6.
     At each row appear the synaptic weights of the axonal branches that fall on the

corresponding dendrite, on last column kP  specifies if the firing region is

complemented or not.
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Fig. 6. Parameters of the morphological net.

4   Experimental Results

The algorithm in geometrical terms is composed of two steps:

1. Find the hyper-rectangle covering all patterns belonging to class C1 (firing
patterns), although patterns of class C0 (turn-off patterns) are included.

2. Isolate the points belonging to class C0 in maximal neighborhoods and take
the complement of these neighborhoods so that the neighborhoods become
part of the off-region.

Example 4.1. Let X= [(1,4),(2,5),(2,2),(3,2),(3,3),(4,4),(5,1)] patterns of class C1 (•)
and X1=[(2,3),(3,4),(4,3)] of class C0 (ο):
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     To verify that the net has been effectively derived, let us classify patterns: (1,4)
and (2,3) belonging to classes C1, and C0, respectively.
     With (1,4), we have:
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In the same way, 0
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     With (2,3), we have:
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5   Conclusions and Future Work

It has been shown that the morphological neural model with dendrite computation is
more intuitive from a geometrical point of view, this has been manifested by the given
example, where the final table can be also obtained by following the algorithm
proposed by Ritter in [4].
     As future work we are working on a visual computational tool that automatically
allows determining the final parameters of a net as we did in the example; and this
with the aim to account with didactic tool to facilitate the training of the
morphological neural model with dendrite computation.
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