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Abstract. Current technology allows the acquisition, transmission, stor-
ing, and manipulation of large collections of images. A way to achieve
this goal is the automatic computation of features such as color, texture,
shape, and position of objects within images, and the use of the features
as query terms.
In this paper we describe some results of a study on similarity evaluation
in image retrieval using shape, texture, color and object orientation and
relative position as content features. A simple system is also introduced
that computes the feature descriptors and performs queries.

1 Introduction

Current technology allows the acquisition, transmission, storing, and manipula-
tion of large collections of images. Content based information retrieval is now a
widely investigated issue that aims at allowing users of multimedia information
systems to retrieve images coherent with a sample image [1]. A way to achieve
this goal is the automatic computation of features such as color, texture, shape,
and position of objects within images, and the use of the features as query terms.

Content-based retrieval can be divided in the following steps:
Preprocessing: The image is first processed in order to extract the features, which
describe its contents. The processing involves filtering, normalization, segmen-
tation, and object identification. The output of this stage is a set of significant
regions and objects.
Feature extraction: Features such as shape, texture, color, etc. are used to de-
scribe the content of the image. Image features can be classified into primitive.
We can extract features at various levels.

The basic image retrieval system based on this concept is shown in Figure 1.

The main difference between our system and other is the manner in which
similarity between a query image and images in a database is computed. For
query images, we first compute ROI (Region of Interest) and extract a set of
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Fig. 1.!Image!retrieval!system

color,!texture!and!shape!features!by!applying!color!histogram!computation,!Ga-
bor!texture!extraction!and!shape!parameters!computation.!The!query!is!pro-
cessed!using!color!features!computation!unit,!next!the!Gabor!texture!unit!uses
as!input!the!query!results!of!the!color!features!computation!unit.!Gabor!texture
unit!compares!the!texture!information!of!the!images!and!discards!the!images
whose!color!information!is!similar!to!that!of!the!query!image!but!the!texture
information! is!much!different! from!that!of! the!query! image.!Next,! the!shape
parameters!computation!unit!is!applied!to!the!query!results!in!this!stage.!The
last!step!is!the!final!query!results.

2! Feature!Extraction

2.1! Color!Features

We! propose!a !new!color! feature!called!color!correlogram!which!describes! the
global! distribution! of! local! spatial! correlations! of! colors! and! the! size! of! this
feature!is!fairly!small![2,3,4].
For!a!pixel!p!=!(x, y)!∈ F , !let!F (p)!denote!its!color.!The!histogram!h!of!F! is
defined!for!i!∈ [c]!where!c!is!number!of!colors!e.g.!c1,!.!.!.!,!cc! as

hci!(F ) !=!N!·M !Pr
p∈F

[p!∈ Fci!
] (1)

hci!
(F )

N ·M gives the probability that the color of the pixel is ci.
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The correlogram of F is defined for i, j ∈ [c], k ∈ [d] as

γ(k)
cicj

(F ) = Pr
p1∈Fci
p2∈F

[p2 ∈ Fcj
| |p1 − p2| = k] (2)

Given any pixel of color ci in the image, γ
(k)
cicj gives the probability that a

pixel at distance k away from the given pixel is of color cj . To compute the
distance between images F and F’ we compare histograms and correlograms

|F − F
′ |h =

∑
i∈[c]

|hci
(F )− hci

(F
′
)|

1 + hci(F ) + hci(F
′)

(3)

|F − F
′ |γ =

∑
i,j∈[c]
k∈[d]

|γ(k)
cicj (F )− γ

(k)
cicj (F

′
)|

1 + γ
(k)
cicj (F ) + γ

(k)
cicj (F

′)
(4)

Given the histograms for a template T and an image F, the intersection of
these two histograms is defined as

Hci
(T ∩ F ) = min{Hci

(T ), Hci
(F )} (5)

and

hci
(T ∩ F ) =

Hci(T ∩ F )
|T | (6)

The intersection correlogram is defined as the correlogram of the intersection
T ∩ F . The intersection correlogram is defined as

γ(k)
cicj

(T ∩ F ) =
Γ

(k)
cicj (T ∩ F )

Hci!
(T!∩ F ) !· 8k

(7)

where

Γ (k)
cicj!

(F ) !=! |{p1!∈ Fci!
, p2!∈ Fcj!

| |p1!− p2| = !k}| (8)

2.2! Gabor!Features

The!differential!structure!of!an!image!is!completely!extracted!by!the!convolu-
tion!with!the!Gaussian!filter!family.!We!use!Gabor!filters!in!our!image!retrieval
system.!This!results!in!the!family!of!Gabor!filters!covering!the!total!spatial!fre-
quency!plane!nearly!uniformly.! Filtering!an! image!with!Gabor!kernel!can!be
interpreted!as!local!Fourier!analysis.!The!known!good!characteristics!of!Gabor
filters!for!image!analysis!can!be!justified!in!scale!space!framework![5,6].!Gabor
filters!are!used!in!analysing!the!property!of!an!object!in!the!selected!image!be-
cause!they!have!optimal!joint!localization!(resolution)!in!both!the!spatial!and!the
spatial!frequency!domains.!The!frequency!tuning!of!filters!allows!an!axiomatic
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characterization of Gabor filters being the linear, shift invariant family of trans-
formations which is (i) parameterized by a scale parameter with a semi-group
structure, (ii) is scale invariant i.e. the function that relates the observable is
independent of the choice of dimensional units.

Gabor functions are Gaussians modulated by complex sinusoids. In its gen-
eral form, the two-dimensional Gabor function and its Fourier transform can be
written as [7,8]

h(x, y) = g(x, y) exp(j2πFx′) (9)

F the radial center frequency and g(x, y) is the 2D Gaussian

g(x, y) =
1

2πσxσy
exp

{
−1

2

[(
x

σx

)2

+
(

y

σy

)2
]}

(10)

where (σx, σy) characterize the spatial extent and bandwidth of Gabor filter
h(x, y).

The aspect ratio of g(x, y) is given by λ = σy/σx
, which gives a measure of

filter’s symmetry. In the frequency domain,

H(u, v) = exp
{
−2π2σ2

[
(u− F )2 λ2 + (v)2

]}
(11)

The set of self-similar Gabor filters is obtained by appropriate rotations and
scalings of through the generating function:

gmn(x, y) = a−mg(x′, y′) a > 1 m, n = integer (12)

where

(x′, y′) = (a−m[x cos θ + y sin θ], a−m[−x sin θ + y cos θ]) (13)

where a is the scale factor, n = 0, 1, . . . , K − 1 is the current orientation
index, K is the total number of orientations, m = 0, 1, . . . , S − 1 is the current
scale index, S is the total number of scales, and θ = nπ

K .

The scale factor a−m in equation (12) ensures that the filter energy is inde-
pendent of m.

Emn =
∫ ∫

|gmn(x, y)|2dxdy (14)

a =
(

fh

fl

) −1
S−1

, F = fh , fl and fh are the lower and upper center
frequencies of interest. In our implementation fl and fh are equal respectively
fl = 0.05 and fh = 0.4 and a = 2.
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Gabor filtered output of the image is obtained by the convolution of the
image with Gabor function for each of the orientation/spatial frequency (scale)
orientation. Given an image I(x, y) , we filter this image with gmn(x, y)

Gmn =
∑

k

∑
l

I(x− k, y − l)g∗mn(x, y) (15)

where * indicates the complex conjugate.
After applying Gabor filters on the image we obtain an array of magnitudes

Emn =
∑

x

∑
y

|Gmn(x, y)| (16)

The magnitudes of the Gabor filter responses are represented by three mo-
ments:

- the mean µmn

µmn =
1

MN

M∑
x=1

N∑
y=1

Gmn(x, y) (17)

- the standard deviation σmn

σmn =

√√√√ M∑
x=1

N∑
y=1

[|Gmn(x, y)| − µmn]2 (18)

- the skewness κmn

κmn =
1

MN

M∑
x=1

N∑
y=1

(
Gmn(x, y)− µmn

σmn

)3

(19)

The feature vector (FV) is represented as follows

FV = [µ11, σ11, κ11 . . . , µSK , σSK , κSK ] (20)

The similarity of a query image Q and a image T in the database is defined
as T where

d(Q)(T )(µ, σ, κ) =
∑
m

∑
n

d(Q)(T )
mn (21)

where

dQT
mn =

∣∣∣∣∣µ
(Q)
mn − µ

(T )
mn

Ξ(µmn)

∣∣∣∣∣ +

∣∣∣∣∣σ
(Q)
mn − σ

(T )
mn

Ξ(σmn)

∣∣∣∣∣ +

∣∣∣∣∣κ
(Q)
mn − κ

(T )
mn

Ξ(κmn)

∣∣∣∣∣ (22)

where Ξ(µmn), Ξ(σmn) and Ξ(κmn) are respectively mean ,the atandard
deviation and the skewness of the transform coefficients over the database.

The number of scales chosen is 4 and orientations are 6. Thus 24 Gabor
filters are used in the experiments, which give 48 dimensional feature vector
texture classification. The proposed features are found to give 94.35% correct
classification rates.
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a) b) c) d) e)

Fig. 2.!Texture!image!a).!The!power!spectrum!of!the!Gabor!transform!with!0◦ (re-
spectively!b)!and!d))!and!60◦ (respectively!c)!and!e))!orientation!for! various!scale.

2.3! Shape!Features

Basically,! shape!based! image! retrieval! is! the!measuring!of! similarity! between
shapes!represented!by!their!features.!Shape!is!an!important!visual!feature!and
it!is!one!of!the!primitive!features!for!image!content!description.!However,!shape
content!description!is!a!difficult!task!because!it!is!difficult!to!define!perceptual
shape!features!and!measure!the!similarity!between!shapes.!To!make!the!problem
more!complex,!shape!is!often!corrupted!with!noise,!defection,!arbitrary!distortion
and!occlusion.!Therefore,!two!steps!are!essential!in!shape!based!image!retrieval,
they!are,!feature!extraction!and!similarity!measurement!between!the!extracted
features.

To!characterize!the!shape!we!used!following!descriptors:!principal!axis!ratio,
compactness,!circular!variance!which!are!translation,!rotation!and!scale!invariant
shape!descriptors,!and!seven!Hu!moments![9,10].

The!principal!axes!ratio!(par)

par!=!
cyy!+!cxx!−

√
(cyy − cxx)2 − 4(cxxcyy − c2

xy)

cyy + cxx +
√

(cyy − cxx)2 − 4(cxxcyy − c2
xy)

(23)

where covariance matrix C of a contour is defined

C =
[

cxx cxy

cxy cyy

]
(24)

Compactness (comp) is the ratio of the perimeter of a circle with equal area
as the original object and the perimeter of original contour

comp =
Pcircle

P
=

2
√

Acircleπ

P
(25)

Circular variance (cv) is the proportional mean-squared error with respect
to a solid circle

cv =
1

Nµ2
r

∑
i

(||pi − µ|| − µr)2 (26)
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where N is the number of contour points, pi = (xi, yi)T is the contour point,
µ is the centroid and µr is the mean radius of the contour.

A object can be represented by the spatial moments of its intensity function.
In the spatial case

mpq =
m∑

x=1

n∑
y=1

xpyqf(x, y) (27)

The central moments are given by

mpq =
m∑

x=1

n∑
y=1

(x−X)p(y − Y )qf(x, y) (28)

where (X,Y ) are

X =
m10

m00
and Y =

m01

m00
(29)

Normalized central moment µpq

µpq =
mpq

(m00)α
α =

p + q

2
+ 1 (30)

Using nonlinear combinations of the lower order moments, a set of moment
invariants (usually called geometric moment), which has the desirable properties
of being invariant under translation, scaling and rotation, are derived. Hu [11]
employed seven moment invariants, that are invariant under rotation as well
as translation and scale change, to recognize characters independent of their
position size and orientation.

φ1 = µ20 + µ02

φ2 = [µ20 − µ02]2 + 4µ2
11

φ3 = [µ30 − 3µ02]2 + [3µ21 − µ03]2

φ4 = [µ30 + µ12]2 + [µ21 + µ03]2 (31)

φ5 = [µ30 − 3µ12][µ30 + µ12]× [(µ30 + µ12)2 − 3(µ21 + µ03)2]+
+[3µ21 − µ03][µ21 + µ03]× [3(µ30 + µ12)

2 − (µ21 + µ03)2]

φ6 = [µ20 − µ02][(µ30 + µ12)2 − (µ21 + µ03)2] + 4µ11[µ30 + µ12][µ21 + µ03]

φ7 = [3µ21 − µ03][µ30 + µ12]× [(µ30 + µ12)2 − 3(µ21 + µ03)2]
−[µ03 − 3µ12][µ21 + µ03]× [3(µ30 + µ12)2 − (µ21 + µ03)2]

To characterize the shape we used a feature vector

SFV = (φ1, φ2, . . . , φ7, par, comp, cv) (32)

consisting of the seven moment invariants, principal axis ratio, compactness
and circular variance descriptors. This vector is used to index each shape in the
database. The distance between two feature vectors is determined by city block
distance measure.
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3! Conclusion

A!retrieval!methodology!which!integrates!color,!texture!and!shape!information
is!presented!in!this!paper.!Consequently,! the!overall!image!similarity!is!devel-
oped!through!the!similarity!based!on!all!the!feature!components.!Experimental
evaluation!based!on!our! image!database! shows! that! our!method!promisingly
outperforms!the!retrieval!systems!from!the!literature.
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