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Abstract. In this paper the use of Bayes rules and interpolation functions is
proposed in order to generate three-dimensional artificial neural cells
incorporating realistic biological neural shapes. A conditional vectorial
stochastic grammar has been developed to control and facilitate the parallel
growth of branching. A L-parser (parser to L-Systems) has also been developed
to guarantee that the grammar is free from mistakes before its use. This parser
has also the function to generate a group of points corresponding to the
morphologic structure of a neural cell. These points are visualized in a three-
dimensional viewer especially developed to show the neural cell generated.

1 Introduction

The conventional theory-experiment basis for scientific research has been expanded
to include computer simulation, which is an increasingly important component of
many research lines. Indeed, one of the most important uses of computers in
neuroscience is the simulation of neural systems due to the large amount of data that
is necessary to be analyzed [1]. Neural modeling has a fundamental role in both
experimental and theoretical studies to determine the characteristics of nervous
systems. There is an extraordinarily large number of neural cells in our brain as well
as a great variety of them. Thus, it is extremely difficult to understand completely
how the communications between them occur and how a specific area of the brain
responds to a specific stimulus. In this context, there are several studies in the sense of
trying to understand the functionality of some neuron types. It is well known that the
shape of the cells is a fundamental factor to define the communication between them
and to define their respective functions. Consequently, it has been proved that as more
complex is the function of the neuron more complex will be its morphology. It is also
shown that cells can change their shape redirecting their dendritic branching to
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respond some factors acting on them, such as the death of some neighborhood cells or
the presence of some attraction/repulsion factor). Therefore, the simulations related to
the neural growth should take into account the shape and plasticity of the cells.

Hamilton [2], McCormick and Mulchandani [3], Ascolli and Krichmar [4] have
published some works related to simulation of the neural growth. These authors
suggest different methods for the growth of cells considering the shape of the natural
cells. For instance, Hamilton [2] and Ascolli and Krichmar [3] proposed stochastic L-
System and simulated the tropism. On the other hand, McCormick and Mulchandani
[3] proposed the growth with stochastic behavior. However, any of these works take
into account the historical of the growth or present a easy extension to the growth of
different cells considering the shape of them in a neural structure.

The aim of this work is the synthesis of three-dimensional neural cells using
interpolation functions and Bayes rules incorporated in stochastic graph grammars.
Thus, the neural development considers the little historical about the growth and the
shape characteristic that are incorporated by the interpolation functions. These
functions are used as a way of generalizing several distribution functions obtained
from extracted measures of natural cells, besides allowing the reduction of the amount
of stored data. As will be showed, the generated cells present shape very similar to the
natural cells. Two tools have been built to assist in this simulation: i) L-Parser, a
parser of the graph grammar generated; ii) Neuron-Viewer, used to show the artificial
cells.

2 The Use of Bayes Rule

The begging of the generation of a cell corresponds to the first level of growing. In
this situation, in which there is not any previous level to consider, the measures to the
artificial cells are obtained considering probability density function. However, very
often the actual state of a cell depends on its previous state of growing (this is valid
just after the cell ramified at least once). For instance, the diameter of the branch can
be decreased with its growing. So, it is necessary to verify the previous diameter to
determinate the actual, once that diameter has to be smaller than the previous one.
The Bayes rule is used to allow this kind of implementation. First of all, it is
necessary to obtain a set of shape measures of the natural cells. This work has
concentrated on rat pyramidal cells (the files were acquired electronically in Canon
[5]). The developed software to obtain the measures considers computer-acquired
neuroanatomical files in Eutectic or SWC format [5]. Second, the measures
considered in the generation of the artificial cells are calculated. The main shape
measures considered are: number of primary branches, length and width of each
dendritic segment and arc segment, and branching angles. These measures are
organized according to the hierarchical level along the tree [6]. The next step is to
estimate the probability density function and then the cumulative distribution
functions (CDFs), based on the natural neural cells measures, which characterize the
morphological properties of the neural cells. Except for the angles, each measure will
generate a bivariated CDF whose random components correspond to the hierarchical
level and the respective measure. The angles will generate a trivariated CDFs in
which random components correspond to two measures (two angles), besides the
hierarchical level. They are related to the torsion and curvature proposed in
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McCormick and Mulchandani [3] work to generate three-dimensional cells. Two
different groups of CDFs have been generated: one corresponding to the apical
branches and another to the basal branches of the pyramidal cells. Fig. 1 presents two
examples of CDFs created.

739111“ g .;DZI.JB
Ciameter 8 Length
(a) (b)
Fig. 1. Examples of CDFs used in the generation of splines. (a) CDF of length dendritic
segments by hierarchical level; (b) CDF corresponding of dendritic segment diameters by
hierarchical level.
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Now, it is necessary to use the Bayes rules to generate CDFs that considers the
previous measure to calculate the actual measure. According to the Bayes rule, the
probability of occurrence of a B specific event is affected by the fact of another event
to have happened or not. Thus, it is necessary to calculate the occurrence of B
conditioned to the previous occurrence of A, denoted by P(B|A) (probability of B
given A) [7]. Its expression is given by:

P(A | B)P(B) _ P(ANB) (1)
P(A)  P(A)

P(B|A)=

The implementation was made considering the dependency of measures between two
branching levels. Therefore, it was created a CDF of B|A, once that the occurrence of
B depends on the A. After that, the calculated B values are used to find the C values,
generating the CDF of C|B, and so on. In Fig. 2 is illustrated some examples of
generated conditional CDFs. The conditional CDFs have been used to control the
length, diameter and angles of dendritic segments. For example, the n segment length
depends on the occurred length in the n-1 segment. In the case of the angles, Bayes
rules (or conditional CDFs) were used to control the two different angles considered
in this work: torsion and curvature. Fig. 3 illustrates some examples of the graphic
resulting of the application of Bayes rules to control these angles.

3 Obtaining the Interpolations

The interpolation functions were generated using the CDFs described in the previous
section and they are applied in all CDFs. In this paper we have not used these
functions to conditional CDFs, but the implementation can be also extended to
include the interpolation function with conditional CDFs (this will be implemented in
future works). There are several methods of interpolation functions. In this work we
used Thin Plate Splines (TPS), which is a linear combination of radial basis functions.



678 R.C. Coelho and O. Vargas Jaques

In a TPS, the interpolating surface presents minimal deformation energy related to the
known charge points, originating a smooth and continuous surface [8,9].
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Fig. 2. Examples of conditional CDFs used in the generation of splines
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Fig. 3. Examples of conditional CDFs used to control the angles of dendritic segment.

Two groups of information are necessary for this interpolation: those known (in
this case, the measures of the neural cells) and those we want to know (in this case,
the measures that will be used in the generation of the cells in agreement with the
probabilities and the level of each branch). The first group of information can be

represented by a set of n vectors V ={V,,V,,...,V, }, where v, = (c,,C,,...,C,),
1<i<nis a d-dimensional vector, and n is the number of samples of a given

measure. Once chosen V, we have a set F'(V)={f(,), f(V,),.... f(V,)}, where

f (V) is aresult of application on v . We can describe the function interpolation as:

Foy=a -i+B+Y wo(i-v)) @

i=1

where @x) corresponds to basic radial basis function, w, is the contribution of the
function @(x) in each distance x, £ is a constant term corresponding to translation of
the @(x) to fit it in the interpolation, and « is a vector used to the rotation of @(x) in
each dimension. The function @(x) used in this work is defined by:

[ = 3
(D(x)z{o ifx=0 3)

x*log(x) otherwise

By the equation (1) and using the known value of V and F'(V'), we can calculate
o, B, and w. After then, we use the equation (4) together with the calculated variables
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in (2) to estimate the unknown values of F(X), being X the values of the measure

for which we want to estimate F'(X) .

F@=a i+ p+ 3w o) 4)

The axes were transposed to facilitate the implementation, such that, being
provided the hierarchical level and a random number (between 0 and 1), the function

returns a measure. Therefore, F'(V) in the equation (2) corresponds to a measure (for
example, diameter), ¢, to the probability (CDF) and c, to the hierarchical level. In the

equation (4), X is a vector with x, representing the probability and x,, the hierarchical
level.

4 Generating Neural Cells

To allow the parallel growth, it was created a stochastic graph grammar (a variation of
L-Systems) that incorporates the interpolation functions and Bayes rules (or
conditional CFDs). Some measures are controlled by interpolation functions (for
example, length of dendritic segment and number of branches) and others, by Bayes
rules (for example, angles and diameter). They are used to express variation on the
growth pattern in terms of the current interaction of the generation process or external
influences such as chemical markers or neurotrophic factors. The statistical functions
incorporate the precise statistical characterization of the morphological features of the
neurons, which can also take into account the stage of the generating process
(previous and current stages).

A parser of L-system (L-parser) has also been developed in this work to compile
and interpret the grammar. It allows the user to enter with the grammar (L-system)
and the result is the object obtained by this grammar. It is very important to eliminate
mistakes in the creation of the grammar before its use. This parser facilitates the
definition of a specific grammar for each type of cell when is necessary to generate
different types of cells in the same neural structure.

The probabilities of each grammar rule have been defined by the probability
functions obtained from the measures extracted from biological cells. This means that
there is not a fixed probability for each rule production, as commonly found in works
that use stochastic L-systems. On the contrary, it is defined a probability function that
allows varying a probability depending on the branching level of the branch. The
statistical functions used were the CDFs described in section 2, which were
incorporated in the grammar using polynomial approximation described in section 3.

It must be emphasized that the grammar results are strongly influenced by the
interpolation functions that are related to the L-systems. These functions are used to
avoid the necessity to work with several data files, once they generalize a specific
measure for all the levels of branching of the cell. So, it is not necessary to have a file
of measures for each level, but just the function that describes these measures as a
whole.

The grammar below represents a summarized model of our proposal, which
includes some control actions (lines 2, 3, 4, 6,7, 7.1.1,7.1.2 and 7.2.1). The execution
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of a graphic operation is conditioned to the logic value of the expression (lines 6.1,
7.1 and 7.2). In line 4 the ChooseSegmentLength (Level) chooses the dendritic
segment length. This function uses the interpolation polynomial described previously
referent to the dendritic segment length of each branching level.

Grammar :

Axiom : X;

Level := 1;

SumCp := O0;

SdLength := ChooseSegmentLength (Level) ;

X > FLengtth (Level) Curvature (Level) Torsion(Level) Diameter (Level) Y
SumCp := SumCp+LengthCp (Level) ;

6.1 [SumCp < Lengthsd] : Y=X

7. Bprob:=ChooseBranch (Level) ;

o Ul bW NP

7.1 [Bprob < BranchProb (Level)] : Y > [-X] [+X]
7.1.1. Level := Level + 1;
7.1.2.LengthSd =ChooseSegmentLength (Level) ;

7.2 [Bprob > BranchProb (Level)] : Y - NULL
7.2.1 Level := Level -1;

Since the execution of its actions is not only depending on probabilistic functions,
we call this model as Conditional and Stochastic Grammar.

In line 5, X is responsible for drawing a dendritic arc. The LenghtCp(Level),
Torsion(Level), Curvature(Level) and Diameter(Level) functions are associated with
the F symbol to give information about direction, length and thickness of the arc to be
drawn.

The dendritic branching process starts in level 1 with the X axiom and the choice
of the dendritic segment length (line 4). Note that there are several CDFs and thin
plate splines associated with F in line 5, such as arc length, torsion angle, curvature
angle and diameter. While the sum of arcs does not reach the chosen length segment
(line 6.1), the branch continues to grow [10]. After this length is reached, it is verified
if the branch will ramify or not (line 7). BranchProb(level), in line 7.1, verifies the
corresponding value of branching probability in this level. If Bprob is smaller than the
branching probability, then two new branches will start to grow starting, thus, a new
dendritic segment level. Otherwise, no more new branching will appear in that branch
and it will stop growing (line 7.2). The process continues recursively until all the
conditions are satisfied (the entire branching stop growing).

Each generated neuron is different from any other previously produced because of
the used statistical functions, but all cells present the same general characteristics
related to neural shape.

Each neuronal dendrite is described as a series of small cylindrical compartments.
Thus, these small compartments will express the tortuosity of the branches. Fig. 4
illustrates some examples of neural cells generated by the proposed method.

An environment of three-dimensional visualization has been generated using
OpenGL tool. This environment allows the volumetric visualization, including
illumination, transparency, texture, rotations, translations and changes of scale of the
generated neural structures. It also includes a menu of options to the variation of
visualization parameters such as color, light intensity, properties of the light and of
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Fig. 4. Neural cells generated by the proposed methods.

the material of the object (in the case, of the neurons), transparency, wire frame
visualization, etc, besides being able to include textures. One example of this
environment can be seen in Fig. 5. It also allows defining how much percentage of a
neuron will be drawn (100%, 90%, etc.). Fig. 6 shows some examples of this option.
In those examples it is possible to see that the branches are growing in parallel.

Fig. 5. Environment to visualize three-dimensional cells.

Fig. 6. Representation of three-dimensional cells drawn in different percentages.

5 Conclusion

The study of cells showed in this paper can provide important support to guide the
simulation of more complex cells in the future, like Purkinjie cell.

It was shown in this work that the inclusion of Bayes rules in L-system allows that
the generation of the current branch takes into account parameters of the previous
stages. In addition, these rules allow relating two or more measures. For instance, we
can consider that the diameter of the branch depends on its length. Therefore, it is
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possible to verify if there is some relationship among the measures or hierarchical
levels. It is important to emphasize that this type of conditional statistics is already
considered for the angles, once we have to work with two angles by the fact of we are
generating three-dimensional cells. In this way, first of all we select a hierarchical
level and a random number. Then, using the polynomial approximation of CDF, we
can calculate an angle (curvature) and, given the curvature, we used Bayes to
calculate the torsion. Additional studies have been initiated about the dynamical
growth of the cell including the trophic fields corresponding to varying concentration
of ions, chemoattractiors or electric fields.
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