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Abstract. Fast algorithms for arithmetic on real or complex polyndmsée well-
known and have proven to be not only asymptotically effichentalso very practi-
cal. Based offrast Fourier Transformthey for instance multiply two polynomials
of degree up to: or multi-evaluate one at points simultaneously within quasi-
linear time O(n - polylogn). An extension to (and in fact the mere definition
of) polynomials over fieldR andC to theskewfield H of quaternions is promis-
ing but still missing. The present work proposes three augres which in the
commutative case coincide but fHrturn out to differ, each one satisfying some
desirable properties while lacking others. For each notindevise algorithms
for according arithmetic; these are quasi-optimal in thatrtrunning times match
lower complexity bounds up to polylogarithmic factors.

1 Motivation

Nearly 40 years after GOLEY and TUKEY [4], their Fast Fourier Transform (FFT)
has provided numerous applications, among them

— fastmultiplication of polynomials
Given the coefficients of, ¢ € C[X], n := deg(p) + deg(q);
determine the coefficients pf q.
which, based on FFT, can be performeddin - logn) and

— theirmulti-evaluation
Given the coefficients @fc C[X], deg(p) < n, andxy,...,z, € C;
determine the values(z1), ..., p(z,).
allowing algorithmic solution withir©(n - log® n).

Observe in both cases the significant improvement over naive?) approaches. These
two examples illustrate a larger class of operations cdfest Polynomial Arithmetic
[MI14] with, again, a vast number of applicatiohk [7]. Festance, GRASOULIS em-
ployed fast polynomial arithmetic to drastically acceterd-Body Simulations in 2D
[B], and RN, REIF, and TaTE did so in 3D [T1]. Since systems with up 16 = 10°
objects arise quite frequently when simulating biocheinicacesses, the theoretical
benefit of asymptotic growtt (N - polylog N) overO(N?) pays off in practice as well.
Technically speaking in order to calculate, for each ofthparticles, the total force
it experiences due to th& — 1 others, GRASOULIS identifies the plan®? with C;
he thus turns Coulomb’s potential into a rational compleaction which, by means of
fast polynomial multiplication and multi-evaluation, cha handled efficiently[[11,13]
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on the other hand exploit fast multi-evaluation of polynalsitoapproximatethe total
forces inR3. Whether3D forces can be obtainezkactlywithin subquadratic time is still

an open question. One promising approach proceeds byfiagtisimilarly to [8], R?

with (a subspace of) BvILTON s four-dimensional algebra of Quaternidiisand there
applying fast polynomial arithmetic of some kind or anotharfact the mere notion

of a polynomial becomes ambiguous when passing from figlds R andK = C to

the skew-fieldK = H. We consider three common approaches to define polynomials
(Sectior®) and, for each induced kind of quaternion polyiadsnpresent quasi-optimal
algorithms supporting according arithmetic operatiorec{®nl3).

2 Quaternions

The algebrd of quaternions was discovered in 1843 by W.R\MHLTON in an attempt
to extend multiplication of 'vectors’ frorR? = C toR3. In fact,H is afour-dimensional
real vector space whose canonical basis j, k satisfies the non-commutative multi-
plicative rule

i’ =42 =k*=ijk=—1, ij=—ji=k  +cyclicinterchange (1)

which, by means of associative and distribute laws, is el¢drio arbitrary quaternions.
H is easily verified to form askew-field that is, any non-zero elementpossesses
a unique two-sided multiplicative inverse*. In fact it holdsa=! = a/|a|?> where
a = Re(a) —iIm;(a) — jIm;(a) — kImg(a) is the analogue of complex conjugation
andla| := Va-a = va-a € Ry thenormsatisfying|a - b| = |a| - |b]. The center
of H is R; in other words: real numbers and only they multiplicativebmmute with
any quaternion. For further details, please refer to theelkewf CHAPTER 7 of [H].
THEOREM 17.32 in [3] determines the (multiplicative algebraic) quexity of quater-
nion multiplication; [2] does so similarly for quaterniamnviersion and division. However
rather than on single quaternions, our focus shall lie omg@ggtics w.r.t.n, the quater-
nion polynomials’ degree, tending to infinity.

It is well-known that commutativithasto be abandoned in order to tuRt into
some sort of a field; in fact, FOBENIUS Theorem states thdtl is theonly associative
division algebra beyon®2 = C. On the other hand to the author’s best knowledge, all
notions of polynomials either require the ground riRdo satisfy commutativity or —
such askew polynomial ringsseer.262, GHAPTER 16 of [10] — they lack evaluation
homomorphisms. The latter means that any polynomiat p(X) € R[X] should
naturally induce a mapping: R — R, = — p(x) such that for alb, z € R:

— ~

X(z) =2, a@@)=a, p-al@)=p)-4(z), and p+q(x)=px)+q(z) .

The distant goal is to find a notion of quaternion polynomvetiéch naturally gen-
eralizes from real or complex onasd supports efficient arithmetic by means of, say,
quasi-linear time algorithms. Our contribution considlree such definitions fdg [ X
which, in caseK is an infinite field, are equivalent to the usual notion. Inedis= H

L wrongly condemned in BAPTERXXI, P.245 of [TZ]...
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however they disagree and give rise to different arithragierations. We focus dvul-
tiplication andMulti-Evaluation and present in Sectidih 3, for each of the three notions,
according quasi-optimal algorithms.

2.1 Polynomials as Ring of Mappings

The idea pursued in this subsection is that the followingotsj should be considered
polynomials:

— the identity mappingX :=id : K - K, z — =,

— any constantmapping : K - K, z+—a foraekK
— the sum of two polynomials and

— the product of two polynomials.

Formally, let the seKX of mappingsf : K — K inherit the ring structure oK by
defining pointwise  f4+g: 2 — f(z)+g(x), f-g:2+— f(x)-g(x). Thenembed
K into this ring by identifyingz € K with the constant mapping > =z — a € K.

Definition 1. K;[X] is the smallest subring &* containingX and the constant map-
pingsK. For instance,

al—i—X-ag-X-X-a3+a4-X-X-X-a5EKl[X] , ai,...,as € K fixed. (2)

K;[X] is closed not only under addition and multiplication bubalsder composition,
i.e,f+g,f g, fogeXKX]for f,g € Ki[X]. Since, in the commutative case, any
such polynomial can be brought to the form

n—1
Zefo acX?’, neN aq ek, 3)

Definition [ there obviously coincides with the classicatiow of polynomial rings
R[X] andC[X]. For the skew-field = H of quaternions, the structure 8f, [ X] is
not so clear at first sight:

— a-X # X-aunlesss € R i.e., the form[[B) in general cannot be attained any more.
— Uniqueness becomes an issue, since

X XiXi+i- XX i X - X0 XX -Xi-X-X-i (4

vanishes identically [5tor oF r201];
in particular, a polynomial can have many more roots thaldégree’ suggests.
— The fundamental theorem of algebra is violated as welk — X -7+ 1 has no root

in H 5, P.205].
— Lagrange-style polynomialg,, to pairwise distinct points,, ..., z,_1 € H, e.g.,
n—1 n—1 -1 n—1
( H (X—:Cg)) . ( H (Tm —l‘g)) or H ((xm —ax0) "t (X—xg))
(=0 =0 =0
l#m L#m L#+m

both interpolateP,,, (z,,) = 1, P, (z¢) = 0, m # £ but obviously lack uniqueness.
— There is no polynomial division with remainder; e.g. X-i-X mod X? = 7?7
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On the other hand we present in Subsedfioh 3.2 algorithmeddition, multiplica-
tion, and multi-evaluation of this kind of quaternion potynials of degree: in time
O(n* - polylogn). Since it turns out that genericc H;[X|] have roughly:* free co-
efficients, the running time is thus quasi-optimal. Finadlfast randomized zero-tester
for expressions like2) anfll(4) comes out easily.

2.2 Polynomials as Sequence of Coefficients

Since the above Definitidd 1 thus does aiow for quaternion polynomial arithmetic
as fast as quasi-linear time, the present subsection peew®ther approach. The idea
is to identify polynomials with their coefficients. Recdilat forp = Z?;()l a, X" and

q = S0, b X" over a commutative field, the finite sequence of coefficients =
(c) € K* of p-qisgiveninterms ofa = (a;) € K* and b = (by) € K* by the
convolution product

c = axb, CgZZfzoat-bg_t, £=0,...,n+m—1 (5)
with the implicit agreement that, = 0 for £ > n andb, = 0 for £ > m.

Definition 2. K»[X] is the setK* of finite sequences of quaternions, equipped with
componentwise addition and convolution product accordm@d). Let X denote the
special sequenc®, 1,0,...,0) € K*.

It is easy to see that this turfi& [ X] into a ring which, in case of field of character-
istic zero, again coincides with the usual ring of polyndsii&[ X]. Here the classical
results assert that arithmetic operatiersnd* can be performed within timé(n) and
O(n - logn), respectively. In Subsectidn 8.1, we show that the samessilple in the
non-commutative rin@l,[ X ]. Dealing withn coefficients, this is trivially quasi-optimal.
Unfortunately fast arithmetic foH-[X] does not include multi-evaluation, simply
because evaluation (substitutidgfor somexr € H) makes no sense here: One might be
tempted to identifya € H* with the formal expressiol_, a, X* andb with >°, b, X*,
but thenc := a * b does not agree with

¢ _
(Taex?) - (Soext) = LSipa X' by X £ Y, eXt
N——
Fby_¢- Xt
because of non-commutativity.

The next subsection considers expressions of the fpiay X* as further notion
of quaternion polynomials. These lack closure under mlidégion; on the other hand,
there, multi-evaluation does make sense and turns out ®diassical complexit@(n -
log? n).

2.3 One-sided Polynomials

Roughly speaking, one aims at a subclasE pfX| where polynomials have onl9(n)
rather than®(n?) coefficients and thus give a chance for operations with gjirsesar
complexity.
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Definition 3. Let X : K — K denote the identity mapping and consider this class of
mappings orkK: Ks[X] = {X mX‘:neNyaeckK} < KK
Thedegree of p € K3[X]is  deg(p) = m%é, deg(0) := —1.

ap

Again this coincides for field&K of characteristic zero with the usual notions. For the
skew-field of quaternions, the restriction comparedio (Blias that all coefficients,
must be on théeft of powersX ‘. Unfortunately, this preventd;[ X ] from being closed
under multiplication; fortunatelfil;[ X | has the following other nice properties:

— being a real vector space; — allows fast multi-evaluation;
— supports interpolation; — a fundamental theorem of algebra holds;
— polynomials satisfy uniqueness. Formally:

Lemma 4. Considerp := Y;— acX*, a; € H.

a) Suppose(z) = 0 for all € H. Thena, = 0 for all .

b) Nevertheless event 0 may have an infinite (and in particular unbounded in terms
of p’s degree) number of roots.

c) If a; # 0 for somef > 1, thenp has at least one root.

Proof. a) Follows from Lemmd&]7b) by choosing > deg(p) and pairwise distinct
Zo,...,Tn—1 € R since then, no three are automorphically equivalent.
b) All quaternionse = i3 + jy + ké with 3,~, 6 € R andj3? +~2 + 62 = 1 are easily
verified zeros op := X2 + 1.
c) Cf.r.205in [5] or see, e.gL]6].

Interpolation is the question of existence and uniqueness, givgn..,z,_1 and

Yo, ---,Yn—1 € K, of a polynomialp € K[X] with degree at most — 1 satisfying
p(ze) = yeforall £ =0,...,n — 1. In the commutative case, both is asserted for pair-
wise distinctz,. Over quaternions, this condition does not suffice neitbeuhiqueness
(Lemmd2b) nor for existence:

Example 5.Nop = aX? + bX + ¢ € H3[X] satisfiep(i) = 0 = p(j), p(k) = 1.

It turns out that here an additional condition has to be iredoshich, in the commu-
tative case, holds trivially for distinct,, namely being automorphically inequivalent.

Definition 6. Call a,b € H automorphically equivalent iff ¢ = - b - u~! for some
non-zerou € H, that is, iff Re(a) = Re(d) A |Im(a)| = |Im(b)] where
Im(a) := iIm;(a) + jIm;(a) + k Img(a).

This obviouslyis an equivalence relation (reflexivity, symmetry, trandiyiyx The name
comes from the fact that mappings— « - = - v~ are exactly th&-algebra automor-
phisms ofH}; cf. [5, BOTTOM OF R215]. The central result of[9] now says:

Lemma 7. For zg,...,x,_1 € H, the following are equivalent

a) To anyyo, . ..,yn—1 € H, there existp € H3[X] of deg(p) < n such thap(z,) =
yg,Z:O,...m—l.

b) Whenevep = )~ a,X* andq = 3.~ by X" satisfyp(x,) = q(x¢) for £ =
0,...,n—1,itfollowsa, = by.
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¢) TheQuaternion Vandermonde Matrix V := (2}"),.m-o, .1 IS invertible.
d) ItsDouble Determinant ||V|| does not vanish.
e) Thex, are pairwise distincand no three of them are automorphically equivalent.

Concluding this subsectiofil;[X] has (unfortunately apart from closure under mul-
tiplication) several nice structural properties.[Tnl 3.3 wi#l furthermore show that it
supports multi-evaluation in timé(n - log® n). More generally, our algorithm applies
to polynomials Hi[X] = {22;01 ar- X by o n €Ny, ag,be € H}
with coefficients toboth sides of each monomial ‘. This generalized notion has the
advantage of yielding not only dR-vector space but a two-sidéftvector space.

3 Algorithms

3.1 Convolution of Quaternion Sequences

Beginning with the simplest case BL[X|:

Letn € N. Givena = (agp,a1,...,a,—1) € H* andb = (bg, b1, ...,bym—1) € H™,
one can compute their convolution according[fo (5) from %6 eenvolutiond and 12
additions of real sequences within tirdén - logn). Indeed write componentwise

a=Re(a)+ilm;(a)+jIm;(a)+kImi(a), b=Re(b)+iIm;(b)+jIm;(b)-+kIm(b)

and exploitR-bilinearity of quaternion convolution.

3.2 Ring of Quaternion Mappings

The central point of this subsection is the identificationtaf X| with the four-fold
Cartesian product of four-variate real ~ponnomiaH‘*R[Xo,Xl, Xo, X3]. Formally
consider, for f : H — H, the quadruplg of four-variate real functions defined by

fo(Xo, -, X3):=Re (p(Xo+iX1+jXa+kX3)) f1(Xo,.., X3):=Im;(p(Xo+iX1+jX2+kX3)) ©6)

f2(Xo, -, X3):=Imj(p(Xo+iX1+jX2+kX3)) f3(Xo,.., X3):=Img(p(Xo+iX1+jX2+kX3))

and multiplication among such mappinfisj : R* — R* given pointwise by

(fo, f1, for f3) + (0,01, G2.G3) = (63)

(foGo—f1G1—f292—f3ds, fogr+F1o+f283—F3d2, foda+FaGo+Fadi—Fids, fodas+fado+Ffigz—f281)

4
In that way, calculations ifil; [ X'] can obviously be as well performed[ifiR[ Xy, .., X3].
This allows for application of classical algorithms for rinvdriate polynomials over
commutative fields. But before, we need a notionle§reeon H, [ X|:

Definition 8. For a commutative multi-variate polynomial, létg denotes itotal de-
gree; e.g.deg(22y?) = 5, deg(0) = —oo. Thedegree deg(q) of a quaternion polyno-
mial ¢ € H;[X] is half the total degree of the real four-variate polynomiﬁ@ + ...+
f2 with fo, ..., fs according to[[B).

2 |n fact, 4 complex convolutions suffice; but asymptoticaihat gains nothing.
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Rather than the total degree, one might as well have corsidére maximum one
deg(x?y3) := 3 since, for 4 variables, they differ by at most a constantdiadiow-
ever we shall later exploit the equalityeg(p - ¢) = deg(p) + deg(q) valid for the first
whereas for the latter in general only thequality deg(p-q) < deg(p)+deg(q) holds.
In fact, this nice property carries over to the degree of gumdn polynomials:

Lemma 9. The degreedeg(p) of p € H;[X] is always integral. Furthermore it holds
deg(p - q) = deg(p) + deg(q).

Now recall the following classical results on four-varigtdynomials:

Lemma 10. a) Given (the coefficients of) ¢ € C[X,,..., X3], the (coefficients of
the) productp - ¢ can be computed in tim@(n* - logn) wheren := deg(p - q) =
deg(p) + deg(q).

b) Givenp € C[Xo,..., X3] of degreen, one can compute withii(n* - logn) steps
the coefficients of)(T- (Xo,..., X3)T + y) € C[Xo, ..., X3], thatis, perform op
an affine variable substitution given Byc C*** andy € C*.

c) A given polynomigb € C[X, ..., X3] of degreen := deg(p) can be evaluated on
all n* points of a 4-dimensional complex giid:= Ay x A; x A, x Az such that
Ay C C, |Ag| = n, within timeO(n* - log? n).

d) The same holds for the regular affine image= T - G + y of such a grid, i.e.,

G = {Tz+y:xz=(,...,23)  €G}, T eC™ regular, yeC*.

e) Letp € C[Xy,...,Xs3] be non-zeron > deg(p). Fix arbitrary A C C of size
|A| > 2n. Then, for(zo, ..., z3) € A* chosen uniformly at random, the probability
of p(x, ..., x3) = 0 is strictly less tharg.

Proof. a) Reduction to the univariate case by means abKECKERs embedding:
cf. EQUATION (8.3) onpr.62 of [1] for m := 4, dealing with the complex fiel@
rather than an arbitrary ring of coefficients, théoglog-factor may be omitted.

b) Folklore. A proof had to be removed from the final versioe tluspace limitations.
c) Cf. EQUATION (8.5) and the one below an63 of [1] form :=4, ¢ := n.

d) follows from b). It is not known whether multi-evaluatifeasible orarbitrarily

placedn? points within timeO (n* - polylogn).
e) Cf. UBSECTION12.1 in [14].

One could of course identify in a similar way complex unieségipolynomiale € C[Z]
with tuplespg, p1 € R[X, Y] of real bivariate polynomials. However the thus obtained
running times of9(n? - polylogn) thus obtained fofC[Z] are strikingly suboptimal,
basically becauseot everytuple of real bivariate polynomials corresponds to a com-
plex univariate polynomial. For instance,— Re(z) is well-known not only to be no
complex polynomial but to even violata BMANN-JACOBY’s equations of complex dif-
ferentiability. Surprisingly for quaternion polynomiakhe situation is very different:

Lemma 11. Re(X) = $(X —iXi — jXj — kXk) € H;[X]. More generallyevery
guadruple of real four-variate polynomials correspondstquaternion polynomial.
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The generic quaternion polynomial of degreéhus has9(n*) free coefficients. Lem-
madID anf A1 together yield

Theorem 12. a) Multiplication of two quaternion polynomiajs ¢ € H;[X] is possi-
ble in timeO(n* - logn) wheren := deg(p - q¢) = deg(p) + deg(q).
b) Multi-evaluation ofp at zq,...,z,_1 € H can be done withirO(n* - log®n),
n = deg(p).
c) Within the same time, multi-evaluation is even feasiblesamany as:* pointsz,
provided they lie on a (possibly affinely transformedy¥-grid G.
The above complexities are optimal up to the (poly-)lodemic factor.

TheorenIR presumes the polynomial(s) to be given as (ceeftecof four) real four-
variate polynomials. But how fast can one convert input imeractical format likel{2)
or (@) to that form? By means of fast multiplicationse#veralpolynomials, this can be
done efficiently as well:

Theorem 13. a) The (ordered!) producf[;" , p, of m quaternion polynomialg, €
H, [X], each given as quadruple of real four-variate polynomies) be computed
within O(n? - log n - logm) wheren = >, deg(p,) denotes the result’s degree.

b) An algebraic expressioR over quaternions, i.e., composed fram—, -, constants
a € H, and the quaternion variabl& — butwithoutpowers likeX * nor brackets!
— can be converted into the quadruple of real four-variatyypomials according
to @) within timeO(N* - log® N) whereN = |E| denotes the input string’s length.

The above conversion yields a determini€ligV* - log” N)-test for deciding whether a
given quaternion expression liHd (4) represents the zdsmpoial. When satisfied with
arandomizedest, the same can be achieved much faster:

Theorem[I3 (continued)
c) Givene > 0 and an expressiot of lengthN = |E|, composed from ", " =",
" .” constantse € H, the quaternion variablé&, and possibly brackets {”,” ) ”;
then one can test with one-sided error probability at mosthetherE represents
the zero-polynomial within timé@(N - log %).
Proof. a) Standardlivide-and-conquer w.r.t. m similar to COROLLARY 2.15 in [3].
b) Lacking brackets, the input strirfg necessarily has the form

EFE = E + E, + ...+ Ey
where £, describes a produd®, of quaternion constants (degree 0) and the inde-
terminateX (degree 1). Since obviousleg(P;) < N, := |E|, its real four-

variate representation is obtainable witkioN - log® N;) steps. Doing so for all
¢=1,...,M leads to running tm@(N* - log® N) as}_, N, < N.

W.lo.g. letdeg(Py) < deg(P) < ... < deg(Py). Adding up the just ob-
tained four-variate representations in this increasimdpotakes additional time
O(N{ + Ni + ...+ Ni;) < O(NY).

c) By virtue of standard amplification it suffices to deal witle cases = % The
algorithm considers any sét C R of size|A| > 2N. It chooses, z1, 22,23 € A
uniformly and independently at random; and then evaludtesiput expressiofy
by substitutingX := zq + iz1 + jzo + kxs. If the result is zero, the algorithm
reportszero, otherwisenon-zero.
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The running time for evaluation is obviously linear | = N. Moreover, only one-
sided errors occur. So suppaBerepresents non-zegw € H; [X]. Then obviously
deg(p) < N and at least one of the four real four-variate polynomjals .., ps
according to[{B) is non-zero as well. By virtue of Lemimh 1€ will be witnessed
by (zo,...,z3) —i.e.,p(xo + ix1 + jza + kxs) # 0 — with probability at least
1

L O

3.3 Multi-Evaluating Two-Sided Polynomials

Consider an expression of the fopiX') = 2’;01 ae X'y, ap by € H. Expanding
a¢ = Re(ay) + iIm;(ag) + jIm;(ar) + kImg(ar) and similarly forb,, one obtains,
by virtue of distributive laws and since whakcommutes withX*, that it suffices to
multi-evaluate expressions of the form

x) = "y X, a €R () (7)

sincep(X) can be obtained from 16 of them, each multiplied both frorhdefd right
with some basis elemeints, j, k. Now with reala,, multi-evaluation of[{l7) is of course
trivial on g, ..., x,—1 € C; but we wantz, to be arbitrary quaternions! Fortunately,
the latter can efficiently be reduced to the first.

To this end, consider mappings, : H — H, x — u -z - u~* with u € H of norm
|u] = 1. It is well-known [8,Pr214-216] that, identifyingl with R*, ¢, describes a
rotation, i.e.;p,, € SO(R*). Furthermore, restricted to the set

InH := {ze€H:Re(z)=0} = R

of purely imaginaryquaternionsy,, exhausts whol8O(R?) asu runs through all unit
quaternions; this is calledAMILTON’s Theorem. Finally, ¢,, is an (and in fact, again,
the most general-algebra automorphism, i.e., satisfies foe R andz,y € H:

oula) =, pu(+y) = pul®) +ou(y), @ul-y)=pu()- puly) .

Lemma 14. Forv,w € ImH, |v| = 1 = |w]|, letu := (v+w)/|v+w|; theng, (v) = w.
In particular forx € H\R, v := Im(z)/|Im(x)|, w := i,itholds ¢(z) = u='-q(y)-u
wherey :=u-z-u~! € R+ iR=C.

Our algorithm evaluateg € R[X| simultaneously at1, .., z,, € H as follows:

— Forallzy € R+ iR, letuy := 1;

— for eachz, ¢ R, compute (in constant timey), according to LemmBaZ14.

— Perform in linear time the transformatiop, := wu, - x - u[l.

— Use classical techniques to multi-evalugty , . . ., y,, € C within O(n - log® n).
— Re-transform the valuegy,) to q(z¢) = u; - q(ye) - ue.

This proves the claimed running time 6fn - log” n). O
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4 Conclusion

We proposed three generalizations for the notjpolynomial from fields R andC to
the skew-fieldH of quaternions and analyzed their respective propert@se&ch no-
tion, we then investigated (where applicable) on the algielmomplexity of operations
multiplication andmulti-evaluation on polynomials in terms of their degree. The upper
bounds attained by our respective algorithms match (ustratial) lower bounds up to
polylogarithmic factors.

However since each of the above notions lacks one (e.gyrdasider multiplica-
tion) or another (e.g., quasi-linear complexity) desiegiioperty, a satisfactory defini-
tion for quaternion polynomials is still missing. Here caranother one, generalizing
the representation of complex polynomials in terms of theits:

KylX] = {ao- (X —a1) - (X —a2) (X —an) :ne€Ng,ar e H} (8)

So what is the complexity for multi-evaluation T [ X]?
In view of the planarV-body problem, GRASOULIS major break-through was fast
multi-evaluation of complex rational functions

N
> (X —an)™ €)
=1

for givenas,...,ay € C at givenz;,...,zy € C; cf. also ®ROLLARY 7 in [13].

Our techniques from Subsectibn13.3 yield the samedgre H and a, € R. Thus
the crucial question remains whethgr (9) also allows mavgtuation in sub-quadratic
time for botha, andx, being quaternions. But what is a rational quaternion famgti
anyway? We do not even know what a quaternion polynomial ige€dve that, lacking
commutativity,

1 1 1 1 1 1

X0 "' X% - X-a x-p KO0

cannot be collected into one single fraction, in spite ofdbmmon denominator.
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A Postponed Proofs

Here, we collect some proofs which, in the printed versiaal to be quelled due to page
constraints.

Lemma 15. Let f, g € R[X1, ..., X4] denoted-variate real polynomials. Then,

deg(f* + g%) = max{deg(f?), deg(g°)} = 2max{deg f,deg g} .
In particular, the total degree of? + g2 is even.

Proof. The second equation is trivial, regarding that the totatelegatisfiegleg( f?) =
2 deg(f); similarly for theinequalitydeg(f? + ¢?) < max{deg(f?),deg(g?)}. One
thus has to show that, although jA + g2 certain terms of coinciding maximum total
degree might indeed cancel, the above inequality is in fagquality. This is where
the real ground field comes into play: choosefimnd g respective termd/ and N
of coinciding maximum total degree, that &/ = o - X" --- X" and N = b-
X X7 with Y my = deg f = degg = > ng¢ anda,b # 0. Then bothM? =
a?-XPm . X2 and N2 = b2-X7™ --- X3 have total degree equaldeg(f?) =
deg(g?). Furthermore, their respective occurrencegint > cannot cancel becaugé
andb? are strictly positive; hencéeg(f2 + g?) > deg(M?) = deg(N?). 0

Proof of Lemma[d Integrality of the degree is covered by applying Lenimi 16vab
inductively to(f2, f2), (3 + 7. /3), and(f3 + 2 + /3, 3).

For the second claim, straight-forward calculation conditheFour Squares Theoren
for real numbers, here applied to the case of real polynanfial . ., f3, o, - - - , g3

fo+R+B+73) @+a+3h+3a) =
= (fodo — f191 — f2G2 — f393)% + (fogr + fido + fags — f3d2)? (10)
+ (fod2 + f280 + f351 — f133)* + (fogs + f3d0o + fig2 — f241)*

Now observe that the total degree of the left hand sidEZafi&L0)

deg ((f§ + FF + /3 + F5) - (36 + i + 35 + 33))
= deg(f§ + f7 + f3 + f3) + deg(35 + 97 + 75 + 95)
which, by Definition8, agrees witt2 deg(p) + 2 deg(q) for p,q € H;[X] according

to (). At the same time, in view of Equation{® the total degree of{10)'s right hand
side is nothing bu2 deg(p - q). O

Proof of Lemmalll

e Straight forward calculation verifieRe(X) = 1(X —iXi — jXj — kXk) which
obviously belongs td; [ X]. Thus, the quadruple of four-variate real polynomials
(X0,0,0,0) € []*R[Xo, ..., X3] does correspond to a quaternion polynomial.

8 discovered by ELERin 1748
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e Similarly, (X;,0,0,0) € []* R[Xo, ..., X3] corresponds tbm; (X) = Re(—iX) €
H, [X]; same for{ X>, 0,0,0) and(X3, 0,0, 0).

e For any real constant, («,0,0,0) € H4R[XO, ..., X3] corresponds tec € H C
H [X].

e Let(f,0,0,0)and(g,0,0,0) correspond to quaternion polynomials; € H; [X],
respectively. Thelf + g,0,0,0) corresponds tp + ¢ € H;[X]; and,

~ 61 ~
(F-3.0,0,0) Z (,0,0,0)-(3,0,0,0)
corresponds tp - ¢ € H; [X].
SinceR[ Xy, ..., X3] is thesmallesset containing real constants, the generakqysX,

..., X3, and being closed under addition and multiplication, thevalconsiderations
imply that, for anyf € R[ Xy, ..., X3], (f,0,0,0) corresponds to somee H; [X].

. Suppose(f,0,0,0) corresponds tp € H;[X]. Then(O,f,0,0) corresponds to
—ip € H,[X]; analogously fof0,0, f,0) and(0, 0,0, f).

o Let(fo,0,0,0) correspond te, € Hi[X], (0, f1,0,0) topy, (0,0, f2,0) to pz, and
(0,0,0, f3) to ps. Then(fo, f1, f2, f3) correspondstpy + ... + p3 € Hy[X]. O

Proof of Lemmal[I4 Observe thatu=! = 4/|u|?> = —u sinceu € ImH and|u| = 1.
Thus

() (v +w)v(v+ w) 03 + v%w + wu? + wow
m NN = = —_
v |v + w]|? 2 + 2{v,w)
becausev| = 1 = |w| by presumption. A%, w € ImH, furthermorev? = —1 = w?
and thus
—v — 2w+ (2(—v,w)w + v
) Clvuwwry)

2 4 2(v, w)

The R-algebra homomorphism property ensures tb@pu(x)) = ©y (q(x)) for any
polynomialg with real coefficients and € H. In particularR-linearity yields

y=vu(x) = ou(Re(z)+|Im(z)-v) = Re(z)+|Im(z)li € R+iR

O
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