
ar
X

iv
:c

s/
03

04
00

4v
2 

 [c
s.

S
C

]  
2 

Ja
n 

20
04

Quasi-Optimal Arithmetic for Quaternion Polynomials

Martin Ziegler⋆

University of Paderborn, 33095 GERMANY;ziegler@upb.de

Abstract. Fast algorithms for arithmetic on real or complex polynomials are well-
known and have proven to be not only asymptotically efficientbut also very practi-
cal. Based onFast Fourier Transform, they for instance multiply two polynomials
of degree up ton or multi-evaluate one atn points simultaneously within quasi-
linear time O(n · polylog n). An extension to (and in fact the mere definition
of) polynomials over fieldsR andC to theskew-fieldH of quaternions is promis-
ing but still missing. The present work proposes three approaches which in the
commutative case coincide but forH turn out to differ, each one satisfying some
desirable properties while lacking others. For each notion, we devise algorithms
for according arithmetic; these are quasi-optimal in that their running times match
lower complexity bounds up to polylogarithmic factors.

1 Motivation

Nearly 40 years after COOLEY and TUKEY [4], their Fast Fourier Transform (FFT)
has provided numerous applications, among them

– fastmultiplication of polynomials
Given the coefficients ofp, q ∈ C[X ], n := deg(p) + deg(q);
determine the coefficients ofp · q.

which, based on FFT, can be performed inO(n · logn) and

– theirmulti-evaluation
Given the coefficients ofp ∈ C[X ], deg(p) < n, andx1, . . . , xn ∈ C;
determine the valuesp(x1), . . . , p(xn).

allowing algorithmic solution withinO(n · log2 n).
Observe in both cases the significant improvement over naiveO(n2) approaches. These
two examples illustrate a larger class of operations calledFast Polynomial Arithmetic
[1,14] with, again, a vast number of applications [7]. For instance, GERASOULIS em-
ployed fast polynomial arithmetic to drastically accelerateN -Body Simulations in 2D
[8], and PAN, REIF, and TATE did so in 3D [11]. Since systems with up toN = 105

objects arise quite frequently when simulating biochemical processes, the theoretical
benefit of asymptotic growthO(N ·polylogN) overO(N2) pays off in practice as well.

Technically speaking in order to calculate, for each of theN particles, the total force
it experiences due to theN − 1 others, GERASOULIS identifies the planeR2 with C;
he thus turns Coulomb’s potential into a rational complex function which, by means of
fast polynomial multiplication and multi-evaluation, canbe handled efficiently. [11,13]
⋆ Supported byPaSCo, DFG Graduate College no.693
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on the other hand exploit fast multi-evaluation of polynomials toapproximatethe total
forces inR3. Whether3D forces can be obtainedexactlywithin subquadratic time is still
an open question. One promising approach proceeds by identifying, similarly to [8],R3

with (a subspace of) HAMILTON ’s four-dimensional algebra of QuaternionsH and there
applying fast polynomial arithmetic of some kind or another. In fact the mere notion
of a polynomial becomes ambiguous when passing from fieldsK = R andK = C to
the skew-fieldK = H. We consider three common approaches to define polynomials
(Section 2) and, for each induced kind of quaternion polynomials, present quasi-optimal
algorithms supporting according arithmetic operations (Section 3).

2 Quaternions

The algebraH of quaternions was discovered in 1843 by W.R. HAMILTON in an attempt
to extend multiplication of ’vectors’ fromR2 ∼= C toR3. In fact,H is afour-dimensional
real vector space whose canonical basis1, i, j, k satisfies the non-commutative multi-
plicative rule

i2 = j2 = k2 = ijk = −1, ij = −ji = k + cyclic interchange (1)

which, by means of associative and distribute laws, is extended to arbitrary quaternions.
H is easily verified to form askew-field, that is, any non-zero elementa possesses
a unique two-sided multiplicative inversea−1. In fact it holdsa−1 = ā/|a|2 where
ā := Re(a) − i Imi(a) − j Imj(a)− k Imk(a) is the analogue of complex conjugation
and |a| :=

√
a · ā =

√
ā · a ∈ R+ the norm satisfying|a · b| = |a| · |b|. Thecenter

of H is R; in other words: real numbers and only they multiplicatively commute with
any quaternion. For further details, please refer to the excellent1 CHAPTER 7 of [5].
THEOREM 17.32 in [3] determines the (multiplicative algebraic) complexity of quater-
nion multiplication; [2] does so similarly for quaternion inversion and division. However
rather than on single quaternions, our focus shall lie on asymptotics w.r.t.n, the quater-
nion polynomials’ degree, tending to infinity.

It is well-known that commutativityhas to be abandoned in order to turnR4 into
some sort of a field; in fact, FROBENIUS’ Theorem states thatH is theonly associative
division algebra beyondR2 ∼= C. On the other hand to the author’s best knowledge, all
notions of polynomials either require the ground ringR to satisfy commutativity or —
such asskew polynomial rings, seeP.262, CHAPTER 16 of [10] — they lack evaluation
homomorphisms. The latter means that any polynomialp = p(X) ∈ R[X ] should
naturally induce a mappinĝp : R → R, x 7→ p̂(x) such that for alla, x ∈ R:

X̂(x) = x, â(x) = a, p̂ · q(x) = p̂(x) · q̂(x), and p̂+ q(x) = p̂(x) + q̂(x) .

The distant goal is to find a notion of quaternion polynomialswhich naturally gen-
eralizes from real or complex onesand supports efficient arithmetic by means of, say,
quasi-linear time algorithms. Our contribution considersthree such definitions forK[X ]
which, in caseK is an infinite field, are equivalent to the usual notion. In caseK = H

1 wrongly condemned in CHAPTER XXI, P.245 of [12]. . .



Quasi-Optimal Arithmetic for Quaternion Polynomials 707

however they disagree and give rise to different arithmeticoperations. We focus onMul-
tiplication andMulti-Evaluation and present in Section 3, for each of the three notions,
according quasi-optimal algorithms.

2.1 Polynomials as Ring of Mappings

The idea pursued in this subsection is that the following objects should be considered
polynomials:

– the identity mappingX := id : K → K, x 7→ x,
– any constant mappinĝa : K → K, x 7→ a for a ∈ K

– the sum of two polynomials and
– the product of two polynomials.

Formally, let the setKK of mappingsf : K → K inherit the ring structure ofK by
defining pointwise f+g : x 7→ f(x)+g(x), f ·g : x 7→ f(x)·g(x). Then embed
K into this ring by identifyinga ∈ K with the constant mappingK ∋ x 7→ a ∈ K.

Definition 1. K1[X ] is the smallest subring ofKK containingX and the constant map-
pingsK. For instance,

a1+X ·a2 ·X ·X ·a3+a4 ·X ·X ·X ·a5 ∈ K1[X ] , a1, . . . , a5 ∈ K fixed. (2)

K1[X ] is closed not only under addition and multiplication but also under composition,
i.e.,f + g, f · g, f ◦ g ∈ K1[X ] for f, g ∈ K1[X ]. Since, in the commutative case, any
such polynomial can be brought to the form

∑n−1

ℓ=0
aℓX

ℓ, n ∈ N, aℓ ∈ K , (3)

Definition 1 there obviously coincides with the classical notion of polynomial rings
R[X ] andC[X ]. For the skew-fieldK = H of quaternions, the structure ofH1[X ] is
not so clear at first sight:

– a ·X 6= X·a unlessa ∈ R i.e., the form (3) in general cannot be attained any more.
– Uniqueness becomes an issue, since

X ·X · i ·X · i + i ·X ·X · i ·X − i ·X · i ·X ·X − X · i ·X ·X · i (4)

vanishes identically [5,TOP OF P.201];
in particular, a polynomial can have many more roots than its’degree’ suggests.

– The fundamental theorem of algebra is violated as well:i ·X−X · i+1 has no root
in H [5, P.205].

– Lagrange-style polynomialsPm to pairwise distinct pointsx0, . . . , xn−1 ∈ H, e.g.,

( n−1∏

ℓ=0
ℓ 6=m

(X−xℓ)

)
·
( n−1∏

ℓ=0
ℓ 6=m

(xm−xℓ)

)−1

or
n−1∏

ℓ=0
ℓ 6=m

(
(xm−xℓ)

−1 · (X−xℓ)
)

both interpolatePm(xm) = 1,Pm(xℓ) = 0,m 6= ℓ but obviously lack uniqueness.
– There is no polynomial division with remainder; e.g. X ·i·X mod X2 = ???
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On the other hand we present in Subsection 3.2 algorithms foraddition, multiplica-
tion, and multi-evaluation of this kind of quaternion polynomials of degreen in time
O(n4 · polylogn). Since it turns out that genericp ∈ H1[X ] have roughlyn4 free co-
efficients, the running time is thus quasi-optimal. Finally, a fast randomized zero-tester
for expressions like (2) and (4) comes out easily.

2.2 Polynomials as Sequence of Coefficients

Since the above Definition 1 thus does notallow for quaternion polynomial arithmetic
as fast as quasi-linear time, the present subsection proposes another approach. The idea
is to identify polynomials with their coefficients. Recall that forp =

∑n−1
ℓ=0 aℓX

ℓ and
q =

∑m−1
ℓ=0 bℓX

ℓ over a commutative fieldK, the finite sequence of coefficientsc =
(cℓ) ∈ K∗ of p · q is given in terms ofa = (aℓ) ∈ K∗ and b = (bℓ) ∈ K∗ by the
convolution product

c = a ∗ b, cℓ =
∑ℓ

t=0 at · bℓ−t, ℓ = 0, ..., n+m−1 (5)

with the implicit agreement thataℓ = 0 for ℓ ≥ n andbℓ = 0 for ℓ ≥ m.

Definition 2. K2[X ] is the setK∗ of finite sequences of quaternions, equipped with
componentwise addition and convolution product accordingto (5). LetX denote the
special sequence(0, 1, 0, . . . , 0) ∈ K∗.

It is easy to see that this turnsK2[X ] into a ring which, in case of fieldsK of character-
istic zero, again coincides with the usual ring of polynomials K[X ]. Here the classical
results assert that arithmetic operations+ and* can be performed within timeO(n) and
O(n · logn), respectively. In Subsection 3.1, we show that the same is possible in the
non-commutative ringH2[X ]. Dealing withn coefficients, this is trivially quasi-optimal.

Unfortunately fast arithmetic forH2[X ] does not include multi-evaluation, simply
because evaluation (substitutingX for somex ∈ H) makes no sense here: One might be
tempted to identifya ∈ H∗ with the formal expression

∑
ℓ aℓX

ℓ andb with
∑

ℓ bℓX
ℓ,

but thenc := a ∗ b does not agree with
(∑

aℓX
ℓ
)
·
(∑

bℓX
ℓ
)

=
∑

ℓ

∑ℓ

t=0 at ·Xt · bℓ−t︸ ︷︷ ︸
6=bℓ−t·Xt

·Xℓ−t 6= ∑
ℓ cℓX

ℓ

because of non-commutativity.
The next subsection considers expressions of the form

∑
aℓX

ℓ as further notion
of quaternion polynomials. These lack closure under multiplication; on the other hand,
there, multi-evaluation does make sense and turns out to have classical complexityO(n ·
log2 n).

2.3 One-sided Polynomials

Roughly speaking, one aims at a subclass ofH1[X ] where polynomials have onlyO(n)
rather thanΘ(n4) coefficients and thus give a chance for operations with quasi-linear
complexity.
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Definition 3. Let X : K → K denote the identity mapping and consider this class of

mappings onK: K3[X ] :=
{∑n

ℓ=0 aℓX
ℓ : n ∈ N0, aℓ ∈ K

}
⊆ KK.

Thedegree of p ∈ K3[X ] is deg(p) = max
aℓ 6=0

ℓ, deg(0) := −1.

Again this coincides for fieldsK of characteristic zero with the usual notions. For the
skew-field of quaternions, the restriction compared to (2) applies that all coefficientsaℓ
must be on theleft of powersXℓ. Unfortunately, this preventsH3[X ] from being closed
under multiplication; fortunately,H3[X ] has the following other nice properties:

– being a real vector space;
– supports interpolation;

– allows fast multi-evaluation;
– a fundamental theorem of algebra holds;
– polynomials satisfy uniqueness. Formally:

Lemma 4. Considerp :=
∑n−1

ℓ=0 aℓX
ℓ, aℓ ∈ H.

a) Supposep(x) = 0 for all x ∈ H. Thenaℓ = 0 for all ℓ.
b) Nevertheless evenp 6= 0 may have an infinite (and in particular unbounded in terms

of p’s degree) number of roots.
c) If aℓ 6= 0 for someℓ ≥ 1, thenp has at least one root.

Proof. a) Follows from Lemma 7b) by choosingn ≥ deg(p) and pairwise distinct
x0, . . . , xn−1 ∈ R since then, no three are automorphically equivalent.

b) All quaternionsx = iβ+ jγ+ kδ with β, γ, δ ∈ R andβ2 + γ2+ δ2 = 1 are easily
verified zeros ofp := X2 + 1.

c) Cf. P.205 in [5] or see, e.g., [6].

Interpolation is the question of existence and uniqueness, givenx0, . . . , xn−1 and
y0, . . . , yn−1 ∈ K, of a polynomialp ∈ K[X ] with degree at mostn − 1 satisfying
p(xℓ) = yℓ for all ℓ = 0, . . . , n− 1. In the commutative case, both is asserted for pair-
wise distinctxℓ. Over quaternions, this condition does not suffice neither for uniqueness
(Lemma 4b) nor for existence:

Example 5.No p = aX2 + bX + c ∈ H3[X ] satisfiesp(i) = 0 = p(j), p(k) = 1.

It turns out that here an additional condition has to be imposed which, in the commu-
tative case, holds trivially for distinctxℓ, namely being automorphically inequivalent.

Definition 6. Call a, b ∈ H automorphically equivalent iff a = u · b · u−1 for some
non-zerou ∈ H, that is, iff Re(a) = Re(b) ∧ | Im(a)| = | Im(b)| where
Im(a) := i Imi(a) + j Imj(a) + k Imk(a).

This obviouslyis an equivalence relation (reflexivity, symmetry, transitivity). The name
comes from the fact that mappingsx 7→ u · x · u−1 are exactly theR-algebra automor-
phisms ofH; cf. [5, BOTTOM OF P.215]. The central result of [9] now says:

Lemma 7. For x0, . . . , xn−1 ∈ H, the following are equivalent

a) To anyy0, . . . , yn−1 ∈ H, there existsp ∈ H3[X ] of deg(p) < n such thatp(xℓ) =
yℓ, ℓ = 0, . . . , n− 1.

b) Wheneverp =
∑n−1

ℓ=0 aℓX
ℓ and q =

∑n−1
ℓ=0 bℓX

ℓ satisfyp(xℓ) = q(xℓ) for ℓ =
0, . . . , n− 1, it followsaℓ = bℓ.
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c) TheQuaternion Vandermonde Matrix V := (xm
ℓ )ℓ,m=0,..,n−1 is invertible.

d) ItsDouble Determinant ‖V ‖ does not vanish.
e) Thexℓ are pairwise distinctand no three of them are automorphically equivalent.

Concluding this subsection,H3[X ] has (unfortunately apart from closure under mul-
tiplication) several nice structural properties. In 3.3 wewill furthermore show that it
supports multi-evaluation in timeO(n · log2 n). More generally, our algorithm applies
to polynomials H1

3[X ] :=
{∑n−1

ℓ=0 aℓ ·Xℓ · bℓ : n ∈ N0, aℓ, bℓ ∈ H
}

with coefficients toboth sides of each monomialXℓ. This generalized notion has the
advantage of yielding not only anR-vector space but a two-sidedH-vector space.

3 Algorithms

3.1 Convolution of Quaternion Sequences

Beginning with the simplest case ofH2[X ]:
Let n ∈ N. Givena = (a0, a1, . . . , an−1) ∈ Hn andb = (b0, b1, . . . , bm−1) ∈ Hm,
one can compute their convolution according to (5) from 16 real convolutions2 and 12
additions of real sequences within timeO(n · logn). Indeed write componentwise

a=Re(a)+i Imi(a)+j Imj(a)+k Imk(a), b=Re(b)+i Imi(b)+j Imj(b)+k Imk(b)

and exploitR-bilinearity of quaternion convolution.

3.2 Ring of Quaternion Mappings

The central point of this subsection is the identification ofH1[X ] with the four-fold
Cartesian product of four-variate real polynomials

∏4
R[X0, X1, X2, X3]. Formally

consider, forf : H → H, the quadruplẽf of four-variate real functions defined by

f̃0(X0, .., X3):=Re
(
p(X0+iX1+jX2+kX3)

)
f̃1(X0, ..,X3):=Imi

(
p(X0+iX1+jX2+kX3)

)

f̃2(X0, .., X3):=Imj

(
p(X0+iX1+jX2+kX3)

)
f̃3(X0, ..,X3):=Imk

(
p(X0+iX1+jX2+kX3)

) (6)

and multiplication among such mappingsf̃ , g̃ : R4 → R4 given pointwise by

(f̃0, f̃1, f̃2, f̃3) · (g̃0, g̃1, g̃2, g̃3) := (61
2 )

(f̃0g̃0−f̃1g̃1−f̃2g̃2−f̃3g̃3, f̃0g̃1+f̃1g̃0+f̃2g̃3−f̃3g̃2, f̃0g̃2+f̃2g̃0+f̃3g̃1−f̃1g̃3, f̃0g̃3+f̃3g̃0+f̃1g̃2−f̃2g̃1)

In that way, calculations inH1[X ] can obviously be as well performed in
4∏
R[X0, .., X3].

This allows for application of classical algorithms for multivariate polynomials over
commutative fields. But before, we need a notion ofdegreeonH1[X ]:

Definition 8. For a commutative multi-variate polynomial, letdeg denotes itstotal de-
gree; e.g.,deg(x2y3) = 5, deg(0) = −∞. Thedegree deg(q) of a quaternion polyno-
mial q ∈ H1[X ] is half the total degree of the real four-variate polynomialf̃2

0 + . . .+
f̃2
3 with f̃0, . . . , f̃3 according to (6).

2 In fact, 4 complex convolutions suffice; but asymptotically, that gains nothing.
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Rather than the total degree, one might as well have considered the maximum one
deg(x2y3) := 3 since, for 4 variables, they differ by at most a constant factor. How-
ever we shall later exploit the equalitydeg(p · q) === deg(p) + deg(q) valid for the first
whereas for the latter in general only theinequality deg(p ·q) ≤≤≤ deg(p)+deg(q) holds.
In fact, this nice property carries over to the degree of quaternion polynomials:

Lemma 9. The degreedeg(p) of p ∈ H1[X ] is always integral. Furthermore it holds
deg(p · q) = deg(p) + deg(q).

Now recall the following classical results on four-variatepolynomials:

Lemma 10. a) Given (the coefficients of)p, q ∈ C[X0, . . . , X3], the (coefficients of
the) productp · q can be computed in timeO(n4 · logn) wheren := deg(p · q) =
deg(p) + deg(q).

b) Givenp ∈ C[X0, . . . , X3] of degreen, one can compute withinO(n4 · logn) steps
the coefficients ofp

(
T · (X0, ..., X3)

† + y
)
∈ C[X0, ..., X3], that is, perform onp

an affine variable substitution given byT ∈ C4×4 andy ∈ C4.
c) A given polynomialp ∈ C[X0, . . . , X3] of degreen := deg(p) can be evaluated on

all n4 points of a 4-dimensional complex gridG := A0 × A1 ×A2 ×A3 such that
Aℓ ⊆ C, |Aℓ| = n, within timeO(n4 · log2 n).

d) The same holds for the regular affine imageG′ = T ·G+ y of such a grid, i.e.,

G′ =
{
T ·x+y : x = (x0, . . . , x3)

† ∈ G
}
, T ∈ C4×4 regular, y ∈ C4 .

e) Letp ∈ C[X0, . . . , X3] be non-zero,n ≥ deg(p). Fix arbitrary A ⊆ C of size
|A| ≥ 2n. Then, for(x0, . . . , x3) ∈ A4 chosen uniformly at random, the probability
of p(x0, . . . , x3) = 0 is strictly less than12 .

Proof. a) Reduction to the univariate case by means of KRONECKER’s embedding:
cf. EQUATION (8.3) onP.62 of [1] for m := 4; dealing with the complex fieldC
rather than an arbitrary ringR of coefficients, theloglog-factor may be omitted.

b) Folklore. A proof had to be removed from the final version due to space limitations.
c) Cf. EQUATION (8.5) and the one below onP.63 of [1] form := 4, c := n.
d) follows from b). It is not known whether multi-evaluationis feasible onarbitrarily

placedn4 points within timeO(n4 · polylogn).
e) Cf. SUBSECTION12.1 in [14].

One could of course identify in a similar way complex univariate polynomialsp ∈ C[Z]
with tuplesp0, p1 ∈ R[X,Y ] of real bivariate polynomials. However the thus obtained
running times ofO(n2 · polylogn) thus obtained forC[Z] are strikingly suboptimal,
basically becausenot everytuple of real bivariate polynomials corresponds to a com-
plex univariate polynomial. For instance,z 7→ Re(z) is well-known not only to be no
complex polynomial but to even violate RIEMANN -JACOBY’s equations of complex dif-
ferentiability. Surprisingly for quaternion polynomials, the situation is very different:

Lemma 11. Re(X) = 1
4 (X − iXi − jXj − kXk) ∈ H1[X ]. More generally,every

quadruple of real four-variate polynomials corresponds toa quaternion polynomial.
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The generic quaternion polynomial of degreen thus hasΘ(n4) free coefficients. Lem-
mas 10 and 11 together yield

Theorem 12. a) Multiplication of two quaternion polynomialsp, q ∈ H1[X ] is possi-
ble in timeO(n4 · logn) wheren := deg(p · q) = deg(p) + deg(q).

b) Multi-evaluation ofp at x0, . . . , xn−1 ∈ H can be done withinO(n4 · log2 n),
n := deg(p).

c) Within the same time, multi-evaluation is even feasible at as many asn4 pointsx,
provided they lie on a (possibly affinely transformed)n4-grid G.

The above complexities are optimal up to the (poly-)logarithmic factor.

Theorem 12 presumes the polynomial(s) to be given as (coefficients of four) real four-
variate polynomials. But how fast can one convert input in more practical format like (2)
or (4) to that form? By means of fast multiplication ofseveralpolynomials, this can be
done efficiently as well:

Theorem 13. a) The (ordered!) product
∏m

ℓ=1 pℓ of m quaternion polynomialspℓ ∈
H1[X ], each given as quadruple of real four-variate polynomials,can be computed
within O(n4 · logn · logm) wheren =

∑
ℓ deg(pℓ) denotes the result’s degree.

b) An algebraic expressionE over quaternions, i.e., composed from+,−, · , constants
a ∈ H, and the quaternion variableX — butwithoutpowers likeX99 nor brackets!
— can be converted into the quadruple of real four-variate polynomials according
to (6) within timeO(N4 · log2 N) whereN = |E| denotes the input string’s length.

The above conversion yields a deterministicO(N4 · log2 N)-test for deciding whether a
given quaternion expression like (4) represents the zero polynomial. When satisfied with
a randomizedtest, the same can be achieved much faster:

Theorem 13 (continued)
c) Givenε > 0 and an expressionE of lengthN = |E|, composed from ”+”, ” -”,

” · ”, constantsa ∈ H, the quaternion variableX , and possibly brackets ”(”, ” )”;
then one can test with one-sided error probability at mostε whetherE represents
the zero-polynomial within timeO(N · log 1

ε
).

Proof. a) Standarddivide-and-conquer w.r.t.m similar to COROLLARY 2.15 in [3].
b) Lacking brackets, the input stringE necessarily has the form

E = E1 ± E2 ± . . . ± EM

whereEℓ describes a productPℓ of quaternion constants (degree 0) and the inde-
terminateX (degree 1). Since obviouslydeg(Pℓ) ≤ Nℓ := |Eℓ|, its real four-
variate representation is obtainable withinO(N4

ℓ · log2 Nℓ) steps. Doing so for all
ℓ = 1, . . . ,M leads to running timeO(N4 · log2 N) as

∑
ℓNℓ ≤ N .

W.l.o.g. let deg(P1) ≤ deg(P2) ≤ . . . ≤ deg(PM ). Adding up the just ob-
tained four-variate representations in this increasing order takes additional time
O(N4

1 +N4
2 + . . .+N4

M ) ≤ O(N4).
c) By virtue of standard amplification it suffices to deal withthe caseε = 1

2 . The
algorithm considers any setA ⊆ R of size|A| ≥ 2N . It choosesx0, x1, x2, x3 ∈ A
uniformly and independently at random; and then evaluates the input expressionE
by substitutingX := x0 + ix1 + jx2 + kx3. If the result is zero, the algorithm
reportszero, otherwisenon-zero.
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The running time for evaluation is obviously linear in|E| = N . Moreover, only one-
sided errors occur. So supposeE represents non-zerop ∈ H1[X ]. Then obviously
deg(p) ≤ N and at least one of the four real four-variate polynomialsp̃0, . . . , p̃3
according to (6) is non-zero as well. By virtue of Lemma 10e),this will be witnessed
by (x0, . . . , x3) — i.e.,p(x0 + ix1 + jx2 + kx3) 6= 0 — with probability at least
1
2 . ⊓⊔

3.3 Multi-Evaluating Two-Sided Polynomials

Consider an expression of the formp(X) =
∑n−1

ℓ=0 aℓX
ℓbℓ, aℓ, bℓ ∈ H. Expanding

aℓ = Re(aℓ) + i Imi(aℓ) + j Imj(aℓ) + k Imk(aℓ) and similarly forbℓ, one obtains,
by virtue of distributive laws and since wholeR commutes withXℓ, that it suffices to
multi-evaluate expressions of the form

q(X) =
∑n−1

ℓ=0 αℓX
ℓ, αℓ ∈ R (!) (7)

sincep(X) can be obtained from 16 of them, each multiplied both from left and right
with some basis element1, i, j, k. Now with realαℓ, multi-evaluation of (7) is of course
trivial on x0, . . . , xn−1 ∈ C; but we wantxℓ to be arbitrary quaternions! Fortunately,
the latter can efficiently be reduced to the first.

To this end, consider mappingsϕu : H → H, x 7→ u · x · u−1 with u ∈ H of norm
|u| = 1. It is well-known [5,PP.214-216] that, identifyingH with R4, ϕu describes a
rotation, i.e.,ϕu ∈ SO(R4). Furthermore, restricted to the set

ImH :=
{
x ∈ H : Re(x) = 0

} ∼= R3

of purely imaginaryquaternions,ϕu exhausts wholeSO(R3) asu runs through all unit
quaternions; this is calledHAMILTON’s Theorem. Finally,ϕu is an (and in fact, again,
the most general)R-algebra automorphism, i.e., satisfies forα ∈ R andx, y ∈ H:

ϕu(α) = α, ϕu(x+ y) = ϕu(x) + ϕu(y), ϕu(x · y) = ϕu(x) · ϕu(y) .

Lemma 14. For v, w ∈ ImH, |v| = 1 = |w|, letu := (v+w)/|v+w|; thenϕu(v) = w.
In particular forx ∈ H\R, v := Im(x)/| Im(x)|,w := i, it holds q(x) = u−1 ·q(y)·u
wherey := u · x · u−1 ∈ R+ iR ∼= C.

Our algorithm evaluatesq ∈ R[X ] simultaneously atx1, .., xn ∈ H as follows:

– For allxℓ ∈ R+ iR, letuℓ := 1;
– for eachxℓ 6∈ R, compute (in constant time)uℓ according to Lemma 14.
– Perform in linear time the transformationyℓ := uℓ · xℓ · u−1

ℓ .
– Use classical techniques to multi-evaluateq aty1, . . . , yn ∈ C within O(n · log2 n).
– Re-transform the valuesq(yℓ) to q(xℓ) = u−1

ℓ · q(yℓ) · uℓ.

This proves the claimed running time ofO(n · log2 n). ⊓⊔
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4 Conclusion

We proposed three generalizations for the notion ’polynomial’ from fields R andC to
the skew-fieldH of quaternions and analyzed their respective properties. For each no-
tion, we then investigated (where applicable) on the algebraic complexity of operations
multiplication andmulti-evaluation on polynomials in terms of their degree. The upper
bounds attained by our respective algorithms match (usually trivial) lower bounds up to
polylogarithmic factors.

However since each of the above notions lacks one (e.g., closure under multiplica-
tion) or another (e.g., quasi-linear complexity) desirable property, a satisfactory defini-
tion for quaternion polynomials is still missing. Here comes another one, generalizing
the representation of complex polynomials in terms of theirroots:

K4[X ] :=
{
a0 · (X − a1) · (X − a2) · · · (X − an) : n ∈ N0, aℓ ∈ H

}
(8)

So what is the complexity for multi-evaluation inH4[X ]?
In view of the planarN -body problem, GERASOULIS’ major break-through was fast

multi-evaluation of complex rational functions

N∑

ℓ=1

(X − aℓ)
−1 (9)

for givena1, . . . , aN ∈ C at givenx1, . . . , xN ∈ C; cf. also COROLLARY 7 in [13].
Our techniques from Subsection 3.3 yield the same forxℓ ∈ H and aℓ ∈ R. Thus
the crucial question remains whether (9) also allows multi-evaluation in sub-quadratic
time for bothaℓ andxℓ being quaternions. But what is a rational quaternion function,
anyway? We do not even know what a quaternion polynomial is! Observe that, lacking
commutativity,

1

X − a
+

1

X − b
=

1

X − a
· 1

X − b
· (X − b) + (X − a) · 1

X − a
· 1

X − b

cannot be collected into one single fraction, in spite of thecommon denominator.

Acknowledgments: The idea to use quaternions forN -Body Simulation was suggested
by PETER BÜRGISSER. The author wishes to thank his student, TOMAS BRAJKOVIC,
for having chosen him as supervisor. In fact, Sections 2.1 and 3.2 constitute the core of
TOMAS’ Staatsexamensarbeit(high school teacher’s thesis).
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A Postponed Proofs

Here, we collect some proofs which, in the printed version, had to be quelled due to page
constraints.

Lemma 15. Letf, g ∈ R[X1, . . . , Xd] denoted-variate real polynomials. Then,

deg(f2 + g2) = max{deg(f2), deg(g2)} = 2max{deg f, deg g} .

In particular, the total degree off2 + g2 is even.

Proof. The second equation is trivial, regarding that the total degree satisfiesdeg(f2) =
2 deg(f); similarly for the inequalitydeg(f2 + g2) ≤ max{deg(f2), deg(g2)}. One
thus has to show that, although inf2 + g2 certain terms of coinciding maximum total
degree might indeed cancel, the above inequality is in fact an equality. This is where
the real ground field comes into play: choose inf andg respective termsM andN
of coinciding maximum total degree, that is,M = a · Xm1

1 · · ·Xmd

d and N = b ·
Xn1

1 · · ·Xnd

d with
∑

mℓ = deg f = deg g =
∑

nℓ anda, b 6= 0. Then bothM2 =

a2 ·X2m1

1 · · ·X2md

d andN2 = b2 ·X2n1

1 · · ·X2nd

d have total degree equal todeg(f2) =
deg(g2). Furthermore, their respective occurrences inf2+ g2 cannot cancel becausea2

andb2 are strictly positive; hencedeg(f2 + g2) ≥ deg(M2) = deg(N2). ⊓⊔

Proof of Lemma 9. Integrality of the degree is covered by applying Lemma 15 above
inductively to(f̃2

0 , f̃
2
1 ), (f̃

2
0 + f̃2

1 , f̃
2
2 ), and(f̃2

0 + f̃2
1 + f̃2

2 , f̃
2
3 ).

For the second claim, straight-forward calculation confirms theFour Squares Theorem3

for real numbers, here applied to the case of real polynomials f̃0, . . . , f̃3, g̃0, . . . , g̃3:

(
f̃2
0 + f̃2

1 + f̃2
2 + f̃2

3

)
·
(
g̃20 + g̃21 + g̃22 + g̃23

)
=

= (f̃0g̃0 − f̃1g̃1 − f̃2g̃2 − f̃3g̃3)
2 + (f̃0g̃1 + f̃1g̃0 + f̃2g̃3 − f̃3g̃2)

2 (10)

+ (f̃0g̃2 + f̃2g̃0 + f̃3g̃1 − f̃1g̃3)
2 + (f̃0g̃3 + f̃3g̃0 + f̃1g̃2 − f̃2g̃1)

2

Now observe that the total degree of the left hand side of (10)is

deg
(
(f̃2

0 + f̃2
1 + f̃2

2 + f̃2
3 ) · ((g̃20 + g̃21 + g̃22 + g̃23)

)

= deg(f̃2
0 + f̃2

1 + f̃2
2 + f̃2

3 ) + deg(g̃20 + g̃21 + g̃22 + g̃23)

which, by Definition 8, agrees with2 deg(p) + 2 deg(q) for p, q ∈ H1[X ] according
to (6). At the same time, in view of Equation (61

2 ), the total degree of (10)’s right hand
side is nothing but2 deg(p · q). ⊓⊔

Proof of Lemma 11.

• Straight forward calculation verifiesRe(X) = 1
4 (X − iXi− jXj − kXk) which

obviously belongs toH1[X ]. Thus, the quadruple of four-variate real polynomials
(X0, 0, 0, 0) ∈

∏4
R[X0, . . . , X3] does correspond to a quaternion polynomial.

3 discovered by EULER in 1748
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• Similarly,(X1, 0, 0, 0) ∈
∏4

R[X0, . . . , X3] corresponds toImi(X) = Re(−iX) ∈
H1[X ]; same for(X2, 0, 0, 0) and(X3, 0, 0, 0).

• For any real constantα, (α, 0, 0, 0) ∈ ∏4
R[X0, . . . , X3] corresponds toα ∈ H ⊆

H1[X ].
• Let (f̃ , 0, 0, 0) and(g̃, 0, 0, 0) correspond to quaternion polynomialsp, q ∈ H1[X ],

respectively. Then(f̃ + g̃, 0, 0, 0) corresponds top+ q ∈ H1[X ]; and,

(f̃ · g̃, 0, 0, 0) (61

2
)

= (f̃ , 0, 0, 0) · (g̃, 0, 0, 0)

corresponds top · q ∈ H1[X ].

SinceR[X0, . . . , X3] is thesmallestset containing real constants, the generatorsX0,X1,
. . ., X3, and being closed under addition and multiplication, the above considerations
imply that, for anyf̃ ∈ R[X0, . . . , X3], (f̃ , 0, 0, 0) corresponds to somep ∈ H1[X ].

• Suppose(f̃ , 0, 0, 0) corresponds top ∈ H1[X ]. Then(0, f̃ , 0, 0) corresponds to
−ip ∈ H1[X ]; analogously for(0, 0, f̃ , 0) and(0, 0, 0, f̃).

• Let (f̃0, 0, 0, 0) correspond top0 ∈ H1[X ], (0, f̃1, 0, 0) to p1, (0, 0, f̃2, 0) to p2, and
(0, 0, 0, f̃3) to p3. Then(f̃0, f̃1, f̃2, f̃3) corresponds top0 + . . .+ p3 ∈ H1[X ]. ⊓⊔

Proof of Lemma 14. Observe thatu−1 = ū/|u|2 = −u sinceu ∈ ImH and|u| = 1.
Thus

ϕu(v) = − (v + w)v(v + w)

|v + w|2 = −v3 + v2w + wv2 + wvw

2 + 2〈v, w〉

because|v| = 1 = |w| by presumption. Asv, w ∈ ImH, furthermorev2 = −1 = w2

and thus

ϕu(v) = −−v − 2w + (2〈−v, w〉w + v)

2 + 2〈v, w〉 = w .

TheR-algebra homomorphism property ensures thatq
(
ϕu(x)

)
= ϕu

(
q(x)

)
for any

polynomialq with real coefficients andx ∈ H. In particular,R-linearity yields

y = ϕu(x) = ϕu

(
Re(x) + | Im(x)| · v

)
= Re(x) + | Im(x)|i ∈ R+ iR

⊓⊔
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