Skip to main content

A Comment on Group Independent Threshold Sharing

  • Conference paper
Information Security Applications (WISA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2908))

Included in the following conference series:

Abstract

Secret sharing is important in the cases where a secret needs to be distributed over a set of n devices so that only authorized subsets of devices can recover the secret. Some secret sharing schemes can be used with only certain algebraic structures (for example fields). Group independent linear threshold sharing refers to a t out of n linear threshold secret sharing scheme that can be used with any finite abelian group. Group independent secret sharing schemes were introduced in [16] and a formal definition was given in [25] and [10]. Here we describe additional properties of group independent sharing schemes. In particular, we discuss how to construct the dual from the shareholder reconstruction matrix, new bounds on the computational requirements of group independent sharing and new necessary and sufficient conditions to test if a matrix will provide a group independent sharing scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins, W., Weintrab, S.: Algebra, an approach via module theory. Springer, New York (1992)

    MATH  Google Scholar 

  2. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D.-thesis, Technion, Haifa (June 1996)

    Google Scholar 

  3. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1988)

    Google Scholar 

  4. Blackburn, S., Burmester, M., Desmedt, Y., Wild, P.: Efficient Multiplicative Sharing schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 107–118. Springer, Heidelberg (1996)

    Google Scholar 

  5. Blundo, C., De Santis, A., Vaccaro, U.: Randomness in Distribution Protocols. Inform. Comput, 111–139 (1996)

    Google Scholar 

  6. Blundo, C., Gaggia, A.G., Stinson, D.R.: On the Dealer’s randomness Required in Secret Sharing Schemes. Design, Codes and Cryptography 11, 235–259 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blundo, C., Masucci, B.: Randomness in Multi-Secret Sharing Schemes. Journal of Universal Computer Science 5(7), 367–389 (1999)

    MathSciNet  Google Scholar 

  8. Blundo, C., Masucci, B.: A note on the Randomness in Dynamic Threshold Scheme. Journal of Computer Security 7(1), 73–85 (1999)

    Google Scholar 

  9. Boyd, C.: Digital Multisignatures. In: Cryptography and coding, pp. 241–246. Clarendon Press, Oxford (1989)

    Google Scholar 

  10. Cramer, R., Fehr, S.: Optimal Black-box secret sharing over arbitrary abelian groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 272. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Csirmaz, L.: The dealer’s random bits in perfect sharing schemes. Studia Sci. Math. Hungar. 32, 429–437 (1996)

    MATH  MathSciNet  Google Scholar 

  12. De Santis, A., Masucucci, B.: Multiple Ramp Schemes. IEEE Transns. on Inform. Theory 45(5), 1720–1728 (1999)

    Article  MATH  Google Scholar 

  13. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function. In: Proceedings of the twenty-sixth annual ACM Symp. Theory of Computing (STOC), pp. 522–533 (1994)

    Google Scholar 

  14. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988)

    Google Scholar 

  15. Desmedt, Y., Di Crescenzo, G., Burmester, M.: Multiplicative non-Abelian sharing schemes and their application to threshold cryptography. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 21–32. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Desmedt, Y., Frankel, Y.: Homomorphic zero-knowledge threshold schemes over any finite Abelian group. Siam J. Disc. Math. 7(4), 667–679 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and its applications. Tech. Report ISSE-TR-97-01, George Mason University (July 1997), ftp://isse.gmu.edu/pub/techrep/97.01.jajodia.ps.gz

  18. Fehr, S.: Efficient Construction of the Dual Span Program, Manuscript, ETH Zurich (May 1999)

    Google Scholar 

  19. Frankel, Y., Gemmel, P., Mackenzie, P., Yung, M.: Proactive RSA. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–454. Springer, Heidelberg (1997)

    Google Scholar 

  20. Frankel, Y., Gemmel, P., Mackenzie, P., Yung, M.: Optimal-Resilience Proactive Public-key Cryptosystems. In: Proc. 38th FOCS, pp. 384–393. IEEE, Los Alamitos (1997)

    Google Scholar 

  21. Gal, A.: Combinatorial methods in boolean function complexity. Ph.D.-thesis, University of Chicago (1995)

    Google Scholar 

  22. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172. Springer, Heidelberg (1996)

    Google Scholar 

  23. Karchmer, M., Wigderson, A.: On span programs. In: Proc. of 8th annual Complexity Theory Conference, pp. 102–111 (1993)

    Google Scholar 

  24. Keng, H.L.: Introduction to Number Theory. Springer, New York (1982)

    MATH  Google Scholar 

  25. King, B.: Randomness Required for Linear Threshold Sharing Schemes Defined over Any Finite Abelian Group. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 376–391. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. King, B.: Some results in linear secret sharing. Ph.D. thesis, University of Wisconsin Milwaukee (2001)

    Google Scholar 

  27. King, B.: A comment on group independent threshold sharing. In: Chae, K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 471–488. Springer, Heidelberg (2003)

    Google Scholar 

  28. Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  30. Stinson, D.: Cryptography, Theory and Practice. CRC Press, New York (1995)

    MATH  Google Scholar 

  31. van Dijk, M.: A Linear Construction of Secret Sharing Schemes. Design, Codes and Cryptography 12, 161–201 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

King, B. (2004). A Comment on Group Independent Threshold Sharing. In: Chae, KJ., Yung, M. (eds) Information Security Applications. WISA 2003. Lecture Notes in Computer Science, vol 2908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24591-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24591-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20827-3

  • Online ISBN: 978-3-540-24591-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics