The Business Grid: Providing Transactional Business
Processes via Grid Services

Frank Leymann' and Kai Giintzel’

'IBM Software Group, Schonaicherstr. 220,
71032 Boblingen, Germany
Leyl@de.ibm.com
% Fraunhofer Institut fiir Arbeitswirtschaft und Organisation IAO, Nobelstr. 12,
70569 Stuttgart, Germany
Kai.Guentzel@iao.fraunhofer.de

Abstract. Web Services provide a suitable technical foundation for making
business processes accessible within and across enterprises. The business logic
encapsulated inside Web Services often resides in already existing transactional
backend-systems. However, the scope of these systems is normally limited to
their domain and is not distributed across heterogeneous environments.

In this paper, we investigate the impact of the emerging Web Service technol-
ogy on transactional backend-systems: Transactional context needs to propagate
from activities or even business processes to services they use. Negotiations
between service requestors and services on context to be propagate can be done
automatically based on policies attached to the corresponding Web Service de-
scriptions. Corresponding standards and mechanisms form the basis of a new
computing and middleware paradigm: the Business Grid.

Some exemplary research work to be done to actually build the outlined Busi-
ness Grid environment is sketched.

1 Introduction

Web Services can be considered as the seminal integration solution for software ar-
chitecture in information technology. Nearly every software vendor and especially all
major suppliers of middleware technology are supporting this new computing para-
digm. Before we will explain our ideas concerning the potential of combining Web
Service technology, transactional backend-systems and here especially ERP-systems
and Grid environments, we will define what we understand by the term Web Service.

We describe the Service Oriented Architecture as the underpinning for Web Service
technology and the necessary steps for providing and requesting Web Services which
are hosted in traditional backend-systems in section 2. The problems which will arise
when integrating transactional backend-systems across heterogeneous environments
will be discussed and a possible solution for this challenge namely BPEL4WS (Busi-
ness Process Execution Language for Web Services), WS-Transaction and WS-
Coordination, the specifications for a comprehensive business process automation
framework that allows companies to leverage the benefits of the Web Services archi-
tecture to create and automate business transactions will be sketched in section 3. The

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 256270, 2003.
© Springer-Verlag Berlin Heidelberg 2003

The Business Grid: Providing Transactional Business Processes via Grid Services 257

Web Services Policy Framework which provides a general purpose model and corre-
sponding syntax to describe and communicate the policies of a Web Service — a nec-
essary feature when searching and matching Web Services with special properties —
could be augmented in conjunction with WS-Coordination to achieve a transactional
handshake. Therefore, WS-Policy together with WS-Coordination helps to select the
correct Web Service regarding operational properties which is outlined in section 4. In
chapter 5 the evolving Open Grid Services Architecture in which a Grid provides an
extensible set of services that can be aggregated in various ways is shortly explained.
Further on, the term Business Grid vaguely used before is specified and compared
with classical Computational Grids. Classical transactional backend-systems like
ERP-systems and the new concept of Business Grids are combined into a new system
architecture — the effects on traditional software architectures are presented in section
6. Finally, in chapter 7, we give a short example of a Business Grid architecture
which could be used to provide fined-grained SAP R/3-transactions as Grid Services.
Some of these provided Grid Services are requested and selected due to operational
and business properties. We will show how failures can be compensated and which
precautions must be made in SAP R/3 to enable Business Grid-support. We conclude
in chapter 8 with a summary and give an outlook on future research.

2 The Service Oriented Architecture and Web Services

A Web Service can be considered as a virtual software component that hides middle-
ware idiosyncrasies like the underlying component model, invocation protocol etc. as
far as possible [1]. Web Services are provided (= publish) by Service Providers, dis-
covered using a Service Directory (= find) and bound dynamically by Service Re-
questors (= bind).

All the action is based on standards-based protocols and formats in order that
interoperability is achieved, even when the partners are using heterogeneous hard-
and software. The transport medium used by this Service Oriented Architecture
(SOA) is (normally) based on TCP/IP and the data exchanged by the involved part-
ners is encoded in XML. The platform-neutral and globally available invocation
mechanism for Web Services is the Simple Object Access Protocol (SOAP) [2]. Web
Services can be considered as firewall-compliant remote procedure calls (RPC), since
the standard transport protocol used by SOAP is HTTP. The Web Service invocation
is packed in the payload of a SOAP-message (to be precise in the SOAP body of the
SOAP envelope which forms the SOAP payload) and sent to a SOAP Endpoint Ref-
erence, the Service Provider.

The Basic Web Services Stack

Web Services can be discovered by browsing a Service Directory, the so called Uni-
versal Description, Discovery and Integration or for short UDDI [3]. Service Provid-
ers are populating UDDI with information about the Web Services provided by them.
This information contains amongst technical descriptions (which methods can be
called, what are the parameters etc.) expressed in the Web Service Description Lan-

258 F. Leymann and K. Giintzel

guage (WSDL) [4] information about the Service Provider himself, i.e. some back-
ground about the person providing the service. The Service Requestor selects an ap-
propriate Web Service after querying the UDDI Business Registry (UBR) and finding
a matching service. As a rule, this Web Service is called in a SOAP-message, the
XML-based RPC.

Transpert Medlam -
the Internet

Service Provider ————==== Service Directory

5 wor
WSDL S .

o —

Fig. 1. The Service Oriented Architecture

Web Service Aggregation

The functions and the business logic inside the provided Web Services could be im-
plemented when there is a need for this specific function. In fact, the business logic is
often already in place and implemented on some systems, e.g. an inventory check
against an inventory control system. Now, this functionality should be provided via
standardized interfaces and transport protocols so that other applications can “con-
sume” this feature in their own application without explicit stub programming as e.g.
in CORBA [5]. Further on, this functionality could be provided to business partners
with two positive effects: first, the business partner is checking the inventory himself
before placing an order for his customer and by this reduces the internal outlays of the
Service Provider and second the business partner can retrieve the information needed
whenever he wants and thus becomes independent of the Service Providers office
hours.

As Web Services are not for direct user-interaction as web browsers but for B2B
integration we have to distinguish between “stand-alone” Web Services and Web

The Business Grid: Providing Transactional Business Processes via Grid Services 259

Services which will be aggregated into process flows. In the latter case, we have to
cope with deferred failure or abort situations. This can become tricky, if the process-
step performed by the Web Service is already committed, the following or adjacent
step must be cancelled and therefore the Web Service must be cancelled, i.e. rolled
back, too. This is a quite difficult task, when then different steps are performed in a
distributed environment and locking [6] can’t be assured due to costs and negative
system throughput at the participating resource managers. Instead of taking the risk of
inconsistencies after a failed rollback, compensation and compensation spheres [7] are
an alternative solution to “classic” ACID-transactions [8].

3 Transactions and Process-Support in a Web Services World

In the real world, companies won’t just consume “lonely” offered Web Services. In-
deed, these software granules will be aggregated into more complex services or
workflows to offer an even more sophisticated service for either internal use or to of-
fer this encapsulated and augmented service as a new Web Service to the outside
world. Anyway, the services offered will manipulate resources and these actions —
whether they are short- or long-lived — should preserve the consistent state of the in-
volved underlying systems.

In classical system-landscapes, transaction support, even across system boundaries
can be achieved with transaction monitors and corresponding transaction protocols,
e.g. 2PhaseCommit [9]. These concepts and techniques can’t be adopted without ad-
ditional assumptions or modifications to the Web Services world, on the one hand the
involved transaction monitors and protocols are not known a priori when dynamically
selecting a Web Service, on the other hand the selected Web Services are often inte-
grated in higher situated workflows [10] and are therefore dependant on the outcome
from long-running processes, even when the Web Service itself is a short-lived trans-
action.

BPEL4WS

Initially, both, IBM and Microsoft, developed their own languages for process-
modelling in Web Service environments: WSFL from IBM [12] and XLANG from
Microsoft [11]. But soon after that, both companies undertook an effort to combine
both languages into a new standard proposal called Business Process Execution Lan-
guage for Web Services (BPEL4AWS) [14]. At the time this paper has been written,
BPEL4WS has been published in a second release (BPEL4WS 1.1 [15]), and it has
been submitted to OASIS for formal standardization.

Business processes expressed in BPEL4WS export and import functionality by
using Web Service interfaces exclusively [14] and by specifying the potential execu-
tion order of operations from a collection of Web Services allows the definition of
both business processes that make use of Web Services and business processes that
externalize their functionality as Web Services.

This Web Service composition language builds directly on top of WSDL. An im-
portant difference between WSDL and BPEL4WS are states. WSDL is essentially

260 F. Leymann and K. Giintzel

stateless because the language is unaware of states between operations. The only state
supported is the state between sending and receiving a message in a request-response
or solicit-response operation. But only by recording the state it becomes possible what
action should be taken next and thus enabling business transactions [16].

For a simple BPEL4WS example have a look at the BPELAWS specification [14]
or at the introducing article about “Business Processes in a Web Services World” [17].
As BPELAWS is a work in progress a number of required features are absent from the
current specification, for example, the actual status of a business process can’t be que-
ried.

WS-Coordination and WS-Transaction

WS-Coordination (WS-C) [18] describes an extensible framework for providing coor-
dination protocols that coordinate the actions of distributed applications. This frame-
work enables the involved participants to reach consistent agreement on the outcome
of distributed activities. WS-C doesn’t provide support for processes.

WS-Transaction (WS-Tx) [19] describes the necessary coordination types that are
used with WS-C: an atomic transaction (AT) is used to coordinate activities having a
short duration and executed within limited trust domains. A business activity (BA) is
used to coordinate activities that are long in duration and desire to apply business
logic to handle business exceptions. The long duration prohibits locking data re-
sources to make actions tentative and hidden from other applications. Instead, actions
are applied immediately and are permanent.

4 Service Arrangements with WS-Policy

Finding and selecting a matching Web Service is the first step in building a business
process based on Web Services. But how to negotiate e.g. security, or transactional
behaviour? For example, how can the work already done be compensated; does the
backend-system providing the selected Web Service support a 2PhaseCommit or does
this system work with compensation spheres instead of atomic transactions?

Transactional Handshake between Web Services

The Web Service Policy Framework (WS-Policy) provides a general purpose model
and corresponding syntax to describe and communicate the policies of a Web Service
[20]. The goal of WS-Policy is to provide the mechanisms needed to enable Web
Service Providers to specify their policy information. This information is expressed
through an XML-based structure called a policy expression and a core set of grammar
elements to indicate how the contained policy assertions apply to a policy subject, i.e.
the endpoint or resource to which the policy is bound. These policy information can
be either associated with specific instances of services or be referenced from WSDL
definitions [21]. Thus, the Service Provider can expose the conditions under which he
provides the Web Service.

The Business Grid: Providing Transactional Business Processes via Grid Services 261

WS-Policy can be used to achieve a “transactional handshake” between the Service
Provider and the Service Requestor. The following two figures show in a simplified
manner how a Service Requestor selects in a Contracting Phase a Web Service based
on certain policies. During the Binding Phase the two participants interact with a
common coordinator as the activity propagates between them:

e
I ean offer you a :

Hln-nmﬁ'r-q' Policy requiremants:,
my Weh Servica i nluln'll:ﬂ'l:hulﬂ ﬁ']
prafarrad Coordinator is myCa _.-q

lfﬂmhﬂﬂﬂlﬂ'THﬂdtl‘hﬁtW&

a—

I:ulnlﬂmd
operatiaal
_proparties

Fig. 2. Contracting Phase

(1) Due to information provided in the attached policy file, the Service Requestor
knows that the requested service is a long-running BusinessActivity and therefore re-
quests the creation of a CoordinationContext at the Activation Service ASmyCo at the
specified Coordinator myCo. (2) This CoordinationContext C1 comprises a URI to
the Service Provider’s BusinessActivity BA. (3) In a third step, the Service Provider
will then register to participate in the BusinessActivityProtocol.

Selecting a Web Service will therefore be done, first, by matching business and op-
erational properties, e.g. the Service is performed under the control of a mission criti-
cal transaction monitor and the data produced will be stored in a relational database,
and, second, by agreeing on matching policies, e.g. that in case of failures the invoked
Web Service has to be compensated with a dedicated compensating Web Service of-
fered by the same Service Provider.

5 The Business Grid

When Web Services will become more and more widespread, the consumption of the
Services offered can grow up rapidly due to the standardized integration of the soft-
ware granules. Inherent, Service Providers have to cope with well know problems as
load balancing, dynamic selection of the most suited Service, billing techniques and
Service Level Agreements [22].

262 F. Leymann and K. Giintzel

Service Requestor F i
i . ;

alpeateleord nationomtesxt o | X | Service F"“HE" |
i
-l'.':m.im'u:-r'l'rp-e!LI'-'I_1-:-_[Iu:'--'-t:1'q."l-ﬂl.-l.-'io-c-'d---:lr--:er'rnt- 1
A peartal e i atine Co b !
5 1 Suancasdcbre P raleen
| I"
L}
| | ¥ T
| Pratocel Servee A 3
: | .

\ e |

II,. T —j
\“___‘ Activation Service F!lg"rnfru.ﬁm Service

.-'-Em-,ﬁu ﬁ&mﬂu

Fig. 3. Binding Phase

Service Oriented Architecture can be considered as new underpinning for a more

generic Application Service Providing (ASP) model. Serving finer grained software
components augmented with a standardized usage model rather than complete appli-
cations (which could be also realised with Web Services) requires to think about a
scalable and service(level)-oriented middleware which will provide the necessary ba-
sic services to enable the Service Oriented Architecture even across system and enter-
prise domains.
Therefore it is only consequent, that researchers began to “merge” the concepts and
ideas of Grid Computing with the Service Oriented Architecture and thus to adopt the
Web Services Architecture [23] to the classical number crunching grid computing en-
vironment [24].

In our terminology, a Business Grid is a Grid environment with Web Services as
the provided resources rather than processor time, storage area or bandwidth as it is
the case with Computational Grids thus resulting in a scalable Service Oriented Ar-
chitecture. Instead of a few requestors in “classical” Grid computing scenarios the
number of potential service requestors in such a Business Grid environment is a priori
unknown and can be enormous. There’s another observation that helps distinguishing
Computational Grids and Business Grids: in classic Grid environments, requestors
had to cope with the issue that their software and/or their data-sets had to be split and
distributed to the performing IT resources, i.e. to the resource providers in the net-
work. When the job finished, the distributed results had to be assembled by the origi-
nating requestor. In contrast, in a Business Grid environment, the Service Requestor

The Business Grid: Providing Transactional Business Processes via Grid Services 263

calls the Web Service granule over the Grid, gets his job done and continues with
other tasks. The challenge in Business Grids is first to find the best Web Service for
the job to be done and second to instantiate the selected Web Service by the Grid en-
vironment that the work is done as it were the only service provisioned in the Busi-
ness Grid.

Service Domain

The Business Grid provides the runtime environment for provisioning Web Services
across heterogeneous platforms and thus ensures the optimal utilization of resources.
The selection process for a suitable Web Service is nearly the same as in a “normal”
Service Oriented Architecture just that we are dealing with business and operational
properties and that the Service Provider is probably not known thus resulting in a
contracting phase done automatically by the environment upon the properties and the
requirements.

The notion of a Service Domain [25] introduces a collection of comparable or re-
lated Web Services through a common service entry point and thus enables the selec-
tion of a specific Web Service instance not just on availability but also on the basis of
Service Level Agreements (SLA) and business arrangements. Therefore, the Service
Domain architecture can be described as a service sharing and aggregation model
through a service entry interface [25].

Servies Bequestor

&E__.

W5 W5 W5 W5
Service Provider | | | Service Provider | | Service Provider |

1+

L

==
+

Fig. 4. A Service Domain

The conjunction of Grid technologies and Service Domains therefore forming the new
concept called the Business Grid enables a new form of resource sharing and pooling

264 F. Leymann and K. Giintzel

of resources: in the future, whenever a company or a clerk needs some specific func-
tionality, the user won’t install an additional server component on its own server, in-
stead he will “ask” for this functionality in the Business Grid environment he sub-
scribed to. Then, it’s up to the Service Domain to fetch the most suited service; the
Business Grid has to schedule the job and to return the results to the requestor.

Open Grid Services Architecture

Several Grid technologies and toolkits are available today, such as Unicore [26] and
the Open Grid Services Architecture (OGSA) [27] for instance. In what follows, we
are focussing on OGSA because OGSA together with the GLOBUS Toolkit [28] is
providing an infrastructure for Grid Computing that is based on a Service Oriented
Architecture.

Building on concepts and technologies from both the Grid and the Web Services
communities, OGSA defines a uniform exposed service semantics — the Grid Service
[29]. It integrates key Grid technologies with Web Service mechanisms to create a
distributed framework based around the Open Grid Services Infrastructure (OGSI)
[30].

OGSI defines, in terms of WSDL interfaces and associated conventions, extensions
and refinements of Web Services standards to support basic Grid behaviours. These
OGSI-compliant Grid services (see figure 5) are intended to form the components of
the Grid infrastructure [31]. Associated with each Grid interface is a potentially dy-
namic set of service data elements which provide a standard representation for infor-
mation about Grid service instances, facilitating the maintenance of internal state for
their lifetime [32].

OGSI is based on Web Services and in particular uses WSDL as the mechanism to
describe the interfaces of Grid Services. However, OGSI extends WSDL 1.1 in two
areas: interface (portType) inheritance and the ability to describe additional informa-
tion elements on a portType [30].

6 Backend-Systems and the Business Grid

The Globus Toolkit, as a possible OGSA-compliant implementation base for a Busi-
ness Grid, can provide the necessary framework to integrate traditional backend-
systems.

However, one cannot plug an enterprise system in a Business Grid and anticipate
all the benefits mentioned before: scalability, reliability and interoperability. If the
concerned backend-system is already decomposed into finer software granules, i.e.
Web Services, one has to look at the underlying software architecture of the affected
system(s). How to cope with monitoring? Who’s responsible for load-balancing: the
Grid or the backend? Which system will ensure consistency after a failure of com-
posed Web Services from different backend-systems? These questions must be an-
swered before adjusting the affected software infrastructure.

The Business Grid: Providing Transactional Business Processes via Grid Services

4

! Grid athar Taterfoces

Service — fnpﬁgl.ug —_

Serwce Service Serwce
data data daota

element element element

265

Fig. 5. OGSA Grid Service [29]

The Business Grid — Comparison with Traditional Client-Server-Computing

If we have a look at figure 6, we can observe an analogy to the classical Client-
Server-Computing paradigm: a client (Service Requestor) requests a job to be done
(Web Service) by a server (Service Provider). In our case, the loadbalancer moved
from a dedicated server component to the Business Grid, this means that instead of
reporting their actual load to their proprietary dispatching server, the Service Provid-
ers are reporting their status to the infrastructure provided by the Grid environment. If
a Service Requestor asks for a specific service, the Business Grid selects as in the
“classic” SOA an appropriate Service Provider, but considers besides the matching
business and operational properties also system load, response time, availability and
transactional behaviour.

Monitoring

Even more complicated than selecting the most suitable service and thus Service Pro-
vider amongst all services is the issue of how to deal with business processes, com-
posed from different Web Services residing in heterogeneous backend-systems. Even
if the exposed services can be triggered from the outside world, is it possible to
monitor the progress of the different steps from a general perspective? In the past, re-
search has been done on integrating workflows from existing systems in higher situ-
ated workflows [32, 33]. In the world of Web Services, status monitoring especially
over different domains, is currently not supported. Therefore, workarounds have to be
provided. A Service Provider can send either periodically a message to the Service

266 F. Leymann and K. Giintzel

Requestor including the current status or every time a status has changed or a Service
Requestor “polls” for the current status, i.e. requests an update. This is cumbersome
because the Web Service itself has to deal with monitoring. Normally, every backend-
system has a monitoring component, which tracks the progress of the involved proc-

esses. Nevertheless, we envision that in future Web Service enabled flow technologies
facilitate corresponding monitoring features.

Service Provider

Service B sto
i ik e 55l Business &rid IRM AS400
Rl
g
I| Sprvice I}ﬂnﬂm
| = Dec VAKX 3000
|
1
III ’fﬂ || 1 Fﬂ-'l!' ||'m-t’=
¥ \\ =
@ | RedHat 7.3
|,_ hulhlnqul
] eperational Loadbaiamcer % o
|_propartiea print Emveice

Fig. 6. Client-Server Business Grid-like

Error-Handling and Compensation

If a business process is aborted due to an application error or cancellation from the
Service Requestor, already completed activities (i.e. Web Services) typically have to
be undone. As mentioned in chapter 3, these Web Services often represent long run-
ning computations, and to ensure suitable performance characteristics they do not im-
plement ACID properties. This implies that these Web Services offer compensation
actions to undo transactions that they already committed in course of their processing.
Since the process’ activities will be bound at runtime by the Business Grid, the Busi-
ness Grid has to maintain a persistent log (“compensation log”) specifying pairs of
activity implementations and corresponding compensating activity implementations.
Often, the latter will be derived from information given in the policy-file of the activ-
ity proper.

The Business Grid: Providing Transactional Business Processes via Grid Services 267

In figure 7, the Service Requestor cancels his process. This means that the com-
pensating activities have to be bound by the Business Grid. This is based on the in-
formation about compensating activity implementations in the compensation log.
Therefore, there is no need that the Service Requestor is involved in specifying com-
pensation actions. The Business Grid has all required information resulting in an
opaque error-handling and compensation.

Service Requestor Service Provider

Procoss #1 App #1

Business Grid

o
$ &
\ : Service Demain |

N

il |
h e App#2

"5 |
hﬂ-ir!-lb;.:d 4 |
o paratio Loadbeloneer ¢ print nvalce |
J

—

il j

Fig. 7. Error-handling in Business Grids

7 Web Services-Based Integration of SAP R/3 in a Business Grid

SAP R/3 [34], the Enterprise Resource Planning (ERP) solution from SAP, is one of
the most commonly used transactional application system for business management
purposes. SAP’s NetWeaver [35] Architecture makes functional components respec-
tive transactions (e.g. BAPI, RFC, IDOC) available as a Web Service.

Nevertheless it’s important to understand the implications resulting from integrat-
ing SAP R/3 in a Business Grid environment. As mentioned in chapter 6, when inte-
grating a transactional backend-system like SAP R/3 into a Business Grid, informa-
tion about load and availability of the backend-system should be available to the
Business Grid. In case of R/3 this information might stem from the SAP Message
Server and the Dispatcher-Workprocess. Otherwise, the selection of the current load-
optimized R/3 Application Server within the actual SAP R/3 environment is not pos-
sible.

268 F. Leymann and K. Giintzel

SAP R/3-Transactions via Web Services

As transactions and thus the corresponding Web Services provided by SAP R/3 get
long-running rather than ACID transactions, compensation must be kept in mind.
Therefore, for each transaction there is a compensating one, undoing the steps as good
as possible in case of an undo request. This pair of transactions can be specified in a
policy attached to service description, together with the coordination type supported.

Due to performance reasons, not all transactions in SAP R/3 are actually executed and
applied to the underlying resource manager at the time of when they are requested to
commit. Instead the corresponding requests are written to a special queue from which
they processed and committed later, or bundled with other transactions in a batch job.

In the Business Grid scenario, the compensating transaction thus can only be per-
formed after the intended transaction has been finally committed to the database sys-
tem. Otherwise, inconsistencies may arise. This requirement can be achieved with
special SAP R/3-customizing, enforcing the commit of transactions called by Web
Services directly after the last step performed in the Logical Unit of Work [36] in SAP
R/3. However, this mechanism will likely have performance impacts.

8 Summary

Service Oriented Architecture establishes the base for a new area of distributed com-
puting. We positioned basic Web Service technology as a means for accessing an ap-
plication and not for implementing it.

The Web Services paradigm therefore enables the transition from tightly coupled
applications to loosely coupled services. With the support of transactions and the
composition of Web Services into processes of any degree of complexity, BPEL4WS
supports orchestration of Web Services.

Contracting between Service Requestor and Service Provider regarding the pre-
ferred or even enforced Coordination Service could be realised based on attached
policies. Similarly, we have argued that the compensating Web Service of a certain
Web Service should published via policies too. Finally, the coordination type, i.e. the
information whether the Web Service is realized via an atomic transaction or a long
running business activity, for example, has to be known to enable a transactional
handshake between the two parties.

Grid concepts and the evolving Open Grid Services Architecture have been briefly
introduced, as well as OGSI, integrating Grid technology and Web Service technol-
ogy, providing a uniform service-oriented architecture for Grid environments.

In the last section, we brought up the potential of integrating SAP R/3 with a Busi-
ness Grid: every transaction or process inside SAP R/3 can be externalized as Web re-
spective Grid Service, thus enabling a totally new integration aspect — SAP R/3-
processes as loosely coupled services in higher-level workflows.

Nevertheless, integrating transactional backend-systems in Business Grids implies
a clear concept how to resolve failures: compensation based recovery has to assume
that activities really have been committed. Otherwise, inconsistencies will arise.

The Business Grid: Providing Transactional Business Processes via Grid Services 269

References

1. Frank Leymann: Web Services and Business Processes, Fraunhofer IAO Symposium
Collaborative Business, Stuttgart, Germany, July 9, 2002

2. Martin Gudgin et al.: SOAP Version 1.2 Part 1: Messaging Framework, W3C, December
19, 2002, http://www.w3.0org/TR/2002/CR-soap12-part1-20021219/

3. UDDl.org: UDDI Version 3.0, Published Specification, July 19, 2002,
http://uddi.org/pubs/uddi-v3.00-published-20020719.pdf

4. Eric Christensen et al.: Web Services Description Language (WSDL) 1.1, W3C, March 15,
2001, http://www.w3.0rg/TR/2001/NOTE-wsdl-20010315

5. OMG: Common Object Request Broker Architecture (CORBA), December 6, 2002,
http://www.omg.org/technology/documents/formal/corba_iiop.htm

6. Philip A. Bernstein et al.: Concurrency Control and Recovery in Database Systems,
Addison-Wesley, 1987

7. Frank Leymann, Dieter Roller: Production Workflow, Prentice Hall, 2000

8. Jim Gray, Andreas Reuter: Transaction Processing: Concepts and Techniques, Morgan
Kaufmann Publishers, 1992

9. Philip A. Bernstein, Eric Newcomer: Principles of Transaction Processing, Morgan
Kaufmann Publishers, 1997

10. Hans-Jorg Schek et al.: Workflows over Workflows: Practical Experiences with the Inte-
gration of SAP R/3 Business Workflows in WISE, in Proceedings of the Informatik *99
Workshop, Paderborn, Germany, October 1999

11. Satish Thatte: XLANG — Web Services for Business Process Design, Microsoft, 2001,
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

12. Frank Leymann: Web Services Flow Language, IBM, 2001,
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

13. Assaf Arkin et al.: Web Service Choreography Interface (WSCI), BEA, Intalio, SAP,
SUN, 2002, ftp://edownload:BUY_ME @ftpna2.bea.com/pub/downloads/wsci-spec-10.pdf

14. Francisco Curbera et al.: Business Process Execution Language for Web Services
(BPEL4WS) 1.0, BEA, IBM, Microsoft, July 31, 2002,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

15. Tony Andrews et al.: Business Process Execution Language for Web Services (BPEL4WS)
1.1, BEA, IBM, Microsoft, SAP, Siebel, March 31, 2003,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf

16. Will van der Alst: Don’t go with the Flow: Web Services Composition Standards Exposed,
in Web Services: Been There, Done That?, IEEE, 2003

16. Frank Leymann, Dieter Roller: Business Processes in a Web Services World, IBM devel-
operworks, August 1, 2002,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelwp/

18. Felipe Cabrera et al.: Web Services Coordination (WS-Coordination) 1.0, BEA, IBM, Mi-
crosoft, August 9, 2002, http://www-106.ibm.com/developerworks/library/ws-coor/

19. Felipe Cabrera et al.: Web Services Transation (WS-Transaction) 1.0, BEA, IBM, Micro-
soft, August 9, 2002,
http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/

20. Don Box et al.: Web Services Policy Framework (WS-Policy, BEA, IBM, Microsoft, SAP,
December 18, 2002,
http://www-106.ibm.com/developerworks/webservices/library/ws-polfram/

21. Don Box et al.: Web Services Policy Attachment (WS-PolicyAttachment), BEA, IBM,
Microsoft, SAP, December 18, 2002,
http://www-106.ibm.com/developerworks/library/ws-polatt/

22. Alexander Keller, Heiko Ludwig: The WSLA Framework: Specifying and Monitoring

Service Level Agreements for Web Services, IBM, May 22, 2002

270

23.
24.
25.
26.
217.

28.
29.
30.
31.

32.

33.

34.
35.
36.

F. Leymann and K. Giintzel

Michael Champion et al.: Web Services Architecture, W3C Working Draft, November 14,
2002, http://www.w3.0rg/TR/2002/WD-ws-arch-20021114/

Ian Foster, Carl Kesselman: The Grid: Blueprint for a New Computing Architecture,
Morgan Kaufmann Publishers, 1999

Yih-Shin Tan et al.: Business Service Grid, Part 1,2,3, IBM developerWorks, February 1,
2003, http://www-106.ibm.com/developerworks/grid/library/i-servicegrid/

The Unicore Forum, http://www.unicore.org

Ian Foster et al.: The Physiology of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration, The Global Grid Forum, the latest Version can be found at
http://www.globus.org/research/papers/ogsa.pdf

The Globus Project, http://www.globus.org

Ian Foster et al.: Grid Services for Distributed System Integration, IEEE, 2002

Steve Tuecke et al.: Open Grid Services Infrastrucutre (OGSI), The Global Grid Forum,
the latest version can be found at http://www.ggf.org/ogsi-wg

Ian Foster et al.: The Open Grid Services Architecture (OGSA), The Global Grid Forum,
the latest version can be found at http://www.ggf.org/ogsa-wg

Andre Naef et al.: Monitoring komplexer Dienste in unternehmensiibergreifenden Prozes-
sen am Beispiel von SAP R/3 Business Workflow, in Proceedings 9. Fachtagung Daten-
banksysteme in Biiro, Technik und Wissenschaft, Oldenburg, Germany, March 1999
Crosstlow: Cross-Organizational Workflow Support in Virtual Enterprises, ESPRIT Proj-
ect 28635, http://www.crossflow.org

SAP AG: SAP R/3 Enterprise, Walldorf, Germany

SAP AG: SAP NetWeaver, Walldorf, Germany

SAP AG: ADM100 SAP Web AS Administration I, Education, Walldorf Germany

	1	Introduction
	2	The Service Oriented Architecture and Web Services
	The Basic Web Services Stack
	Web Service Aggregation

	3	Transactions and Process-Support in a Web Services World
	BPEL4WS
	WS-Coordination and WS-Transaction

	4	Service Arrangements with WS-Policy
	Transactional Handshake between Web Services

	5	The Business Grid
	Service Domain
	Open Grid Services Architecture

	6	Backend-Systems and the Business Grid
	The Business Grid Œ Comparison with Traditional Client-Server-Computing
	Monitoring
	Error-Handling and Compensation

	7	Web Services-Based Integration of SAP R/3 in a Business Grid
	SAP R/3-Transactions via Web Services

	8	Summary
	References

