Representing Web Services with UML: A Case Study

Esperanza Marcos, Valeria de Castro, and Belén Vela

Kybele Research Group
Rey Juan Carlos University
Madrid (Spain)
{e.marcos, vcastro, b.vela}@escet.urjc.es

Abstract. Nowadays services are one of the most important issues in the scope
of the Web Information Systems (WIS). Although, there is a great amount of
Web services, still it do not exist methods or modelling techniques that can
guarantee quality in services and service-oriented applications development.
MIDAS is a model-driven methodology for the development of WISs and is
based on UML, XML and object-relational technology. Web services represent
a new dimension in WIS development, in which the systems are constructed by
means of transparent integration of services available in the Web. WSDL is the
language proposed by the W3C for Web service description. In this paper, an
UML extension for Web services modelling defined in WSDL is described
through a case study.

1 Introduction

In the last decade the Web has become one of the main channels to share and to
spread information. Services are one of the most important issues in the scope of Web
Information Systems (WIS). One of the central ideas of this approach is that future
applications will be conceived like a collection of services available through the Web.
So, for example, companies and organizations could encapsulate their business
processes and publish them like services in the Web, or request other available
services and integrate them to their applications, to provide new solutions.

Several technologies, such as JAVA or .NET allow implementing this kind of
applications. However, there is not any solid methodological basis for service-
oriented system and Web services development. For this reason, new methods or
modelling techniques are needed to guarantee the quality in service-oriented WIS and
Web services development. In the last years a large amount of modelling techniques
and methodologies for the development of WIS [5,8,11] and service-oriented WIS
[15] have appeared. MIDAS [13,4] is a model-driven methodology for the
development of WIS, that proposes to use standards in the development process It is
based on UML [2], XML [3] and object-relational technology [7]. MIDAS selects,
adapts and integrates, if possible, the best techniques and notations of existing
methodologies and also defines some new ones if necessary. Thus, for example, the
UML extension for object-relational database design [12,14] and the UML extension
to represent XML Schemas [16] have been defined.

Fig. 1 shows the MIDAS architecture, which has a system core that represents the
domain and business models. Over this central core we define a ring which includes

M.E. Orlowska et al. (Eds.): IC-SOC 2003, LNCS 2910, pp. 17-27, 2003.
© Springer-Verlag Berlin Heidelberg 2003

18 E. Marcos, V. de Castro, and B. Vela

both the structural and the behavior dimension of the system. The core and this ring
represent the technology and platform independent modeling. The external ring
focuses on the different platforms and supported technologies. We will focus on the
behavioral dimension of MIDAS, which is the marked part in figure and we propose
to model the systems behavior with Web Services.

Behavior
Dimension

System
Core

b

Structural
Dimension

Fig. 1. MIDAS Architecture

The Web Services technologies provide a neutral language that accelerates integration
of applications inside and outside the enterprise [10]. A Web service is a software
system designed to support interoperable machine-to-machine interaction over a
network. It has an interface that describes a collection of operations that will be
accessible through the Web by means of standardized XML messaging. Web Services
Description Language (WSDL) is the language to describe Web Services proposed by
the W3C [17]. In this paper an UML extension for Web Services modelling based on
WSDL is proposed. This extension has two purposes: to make easy both, the Web
Services documentation at a high level of abstraction and the automatic generation of
Web services description in WSDL from UML diagram.

Some other works related with Web services modelling and automatic WSDL code
generation have appeared during the last years [1,20]. However these proposals have
some limitations with respect to our goals. The extension proposal in [1] is not
complete, since it does not allow operations and parameters modelling, neither
relations between these components and others like input or output messages. Since
one of our goals is to make easy the automatic generation of Web services description
in WSDL from UML diagram, it will be necessary to define modelling guidelines that
allow representing all the needed issues for Web services description maintaining the
main benefit of modelling that is the reality abstraction. XMLSPY5 [20] case tool
allows automatic generating of WSDL documents, but starting from its own graphical
notation instead of from an UML diagram.

The rest of the paper is organised as follows: section 2 WSDL metamodel is
described. In section 3 the UML extension for Web services modelling through a case
study is proposed; finally, section 4 sums up the main conclusions and further
research topics.

Representing Web Services with UML: A Case Study 19

2 The WSDL Metamodel

WSDL [17,18] is a markup language proposed by the W3C for describing Web
services. A WSDL document is an XML document which specifies the operations that
a service can perform. One of the advantages of WSDL is that it enables separating
the abstract functionality description offered by a service from description of concrete
details, such as "how" and "where" that functionality is offered [6,9].

WSDL describes Web services through the messages that are exchanged between the
service provider and requestor. An exchange of messages between the service
provider and requestor are described as an operation. A collection of operations is
called a port type, which define the service interface in abstract way. The binding
between a port type and concrete network protocol and message format define the
service interface in concrete way.

Fig. 2 shows the WSDL metamodel represented by an UML class diagram. The
shadowed components represent the concrete issues of service description and the rest
represent abstract issues of service description.

IMPORT
WSDL ©..1) po—, INCLUDE
pace
COMPONENT DOCUMENTATION Location Location
T I~ |
I I *
SERVICE | R DEFINITION o SCHEMA
Name "I\!::;‘:tNameSpace TYPES TargetNameSpace
; i
(1..%)
oRT ELEMENT
Name
I BaseType
MinOccurs
: MaxOccurs
|| . . i
BINDING |4 1| PORTTYPE —] MESSAGE PART
Name Name Name Name -
(0. Type
r 2 inplit ©].1) Element
faplt
(1.
OPERATION
Name

Fig. 2. WSDL metamodel represented in UML

A WSDL document contains a version number and a root DEFINITION component.
It has a Name and TargetNameSpace attribute and zero or more namespaces. The
namespaces are used to avoid naming conflicts when several services or applications
are integrated. A DEFINITION component contains: a TYPES component and zero
or more MESSAGE, PORTTYPE, BINDING and SERVICE components. All WSDL
components can be associates with a DOCUMENTATION component.

A TYPES component is used for data type definitions which will be used in
messages. For this purpose, WSDL is based on XML Schema [19] and contains a
SCHEMA component in which, namespaces and data types are defined. WSDL
allows to include XML Schemas documents defined previously, for that uses a
INCLUDE component which indicates the document location. In the same way the

20 E. Marcos, V. de Castro, and B. Vela

IMPORT component is used to reuse WSDL documents, the document name and
location are needed.

The PORTTYPE component is the most important component in WSDL, since it
describes the operations that the service realizes, that is, the interface. The
OPERATION component groups the set of messages that will be interchanged
between service provider and requester. Each operation can be associated with one,
two or three messages, that is, one input message, one output message or both, and
optionally fault message. A MESSAGE contains a Name attribute and zero or more
PART components. The PART component describes one portion of particular
message that Web service sends or receives. The type associated to a PART can be a
base type XSD (int, float, string, etc.) or a type defined in the TYPES section. In this
last case, the data type can be associated through a fype or element attribute.

A BINDING component describes the binding of a PORTTYPE component and
associated operations to concrete message format and communication protocol, such
as SOAP, HTTP or MIME [18]. WSDL defines different components to describe each
one of these protocols. However a detailed discussion on message format and
communication protocol is beyond the scope of the present paper and will be boarded
in future works.

A SERVICE component contains a Name attribute and describes the set of PORTs
that a service provides. A PORT component contains a Name attribute. It is related
with the BINDING component that describes how and where (by location attribute) to
interact with the service interface.

3 Extended UML for Web Services Modelling

In order to represent each one of proposed elements by WSDL and described in the
previous section, it will be necessary to extend the UML using its own extension
mechanisms [2]. As we have already said, WSDL uses XML Schema for data type
definitions that will be used for message sending. For this reason we use the UML
extensions to represent XML Schemas proposed in [16].

The proposed extension for Web services modelling will be described through a case
study. Firstly, we explain the criteria that have been used for the definition of UML
extension. Next, in section 3.2 we describe in detail the service and next we formalize
the extension explaining the use of proposed stereotypes.

3.1 Design Guidelines for the Definition of UML Extension

To choose the stereotypes necessary to represent in UML all the components of
WSDL and their relations the following criteria are used:

e DEFINITION components have been considered as stereotyped classes
because they are explicitly defined in WSDL and constitute the root component
that groups all the used elements.

e TYPES and SCHEMA components have been considered stereotyped
compositions with <<TypeSchema>> and represent the relation between a
DEFINITION component and the data type definitions.

o MESSAGE, PART, PORT TYPE, OPERATION, BINDING, PORT and
SERVICE components have been considered stereotyped classes because they
represent important components and explicitly defined in WSDL.

Representing Web Services with UML: A Case Study 21

o MESSAGE components will be related to the DEFINITION component, by
means of a composition and must be associated, at least, one PART
component.

e PART components will be related to the MESSAGE component that it used, by
means of a composition. In addition the will have associate the data types that
will be used in the message. Each PART component must be associate to only
one MESSAGE component.

e PORTTYPE component will be related to the DEFINITION component, by
means of a composition and will have associated, at least, one OPERATION
component.

e OPERATION components will be related by means of an aggregation to the
PORTTYPE component that defines its. In addition the MESSAGE component
that its use, will have associated.

e BINDING components will be related to the DEFINITION component, by
means of a composition and must be associated to one PORT TYPE
component.

e PORT components will be related to only one SERVICE component and must
be associated to only one BINDING component.

e SERVICE components will be related to the DEFINITION component, by
means of a composition and must be associate, at least, one PORT component.

3.2 Web Services Modelling: A Case Study

We present the UML extension for web services modelling. For this, we have taken as
a case study a flight information service of an airport called “FlightService”. Fig. 3
shows the “FlightService” Web service description in WSDL.

e = T e Tl
" . s et H ighd b=
e by o ighid ek ™ e e M R ig kg

ods. o i Bgieind sod™ & AT T e T e woaoar |
my nmbmp epeadije ' .
Ay L
g ="t e e S R A e b -t 7T e ™
o1 1 et | D T TS v e 1 BT, ol
s i " § .] g L T N e tem by e TR p e el g
e e g =T e g ™ i s Py ~hbrp el Taga™s
R i aing, rPREETS T 1T B Y A T
T H L ey g IR O
e Tl T o s W] ryosice o TeHE S ke e
PN o B T T 1 ke T g | el e TR ™
e el
Jremphes e rmmptmd v e
lim s mgr L P e e
------- s by el v e e e o e ey e g 1
T g Py 1
i SRR
S] ey B e P e s P - NP TR o
s e ighi Hees® Ippes =i =1 mrme e g i wF g el
T T e e T LT) wep s e b Wk A e e e
= il o ™ i i ™ gl ™Y ™ 1 1l s
Tl irprrEa

e T wo o pam s Tha

= ma s e Sl e

it et Pl ™ Dl i ol PR A
Fagat

s T
g " | gl e e~ i
1= i by ™ g i Femerytors
Ei rames o g b ™ rypaa | o A i e g
Wi e g Pighd el Dag p i ™ r gt g g i a4
sl = 5 Bphi Il e Serf Topal g™ st e iighi G e SRS
. ng e LT Ll Lty o eah
= rrnpe e T b bedegd ™ 1o ncerer mewiarn” b eramp b o nm S gl de
T, - ™ 2 T

-rr g

T

Fig. 3. WSDL description of a “FlightService” Web service

22 E. Marcos, V. de Castro, and B. Vela

The Web service defines two operations “GetFlightInfo” and “Checkin”. The
operation “GetFlightInfo” has two messages, an input and an output message. The
input message “GetFlightInfolnput” contains two parts: “AirlineName” and
“FlightNum”, which use a base type XSD, string and int, respectively. The output
message “GetFlightInfoOutput” has only one part “Flightlnfo”, this part uses the
element “TypeFlightlnfo” as a data type, which is associated through a #ype attribute.
The operation “Checkin” contains only one input message “Checkinlnput”. This
message has only one part “Body”, which use the element “Ticket” as a data type and
is associated through an element attribute.

The port type “AirportServPortType” groups the operations that will be performed by
the service. The link between this port type and the SOAP protocol is described by the
“AirportServBinding” element.

The service has only one port “FlightServicePort”, which defines through an URL the
Web service location.

The UML extension to represent a Web service will be described considering the
design guidelines previously established in section 3.1. Next, we will explain the used
stereotypes for each component, its constraints and its tagged values.

DEFINITION component will be represented by means of stercotyped class
<<DEFINITION>>. The Name attribute will be the name of the class and
TargetNameSpace attribute will be represented as a class attribute. The used
namespaces will be included as tagged values. Tagged values will be associated to
element that defines its as a note, see Fig. 4.

A relliahs gn
w11 S i it i il i i3 PEFIMITRCR =
{1 1 wh P e by el [

PR B e B i

Fig. 4. Representation of the DEFINITION component

Data types that will be used for messages sending will be represented by means of
stereotyped classes <<ELEMENT>>, which will be related by means of
<<TypesSchema>> composition, to <<DEFINITION>> class. The namespaces
used in data type definitions as also TargetNameSpace attribute of SCHEMA
component will be represented as tagged values. In the example data types
“TypeFlightInfo” and “Ticket” are showed but without representing its complete
structure. Will be indicated an order number which appear in the document as a
tagged value of a <<ELEMENT>> class to maintain the correspondence between the
WSDL document and the UML model, see Fig. 5.

Representing Web Services with UML: A Case Study 23

<iybe
«schems targetMamespace=htts:/fexameple.com/ flightinfo.xsd
ernbns="http: £ fwnenn owE orgd 200001070 Scherma ®>

t name="TypeFlight nfo”>

<<DEFINITION>>
Flightservice

rargzthamespaca=hitp:/ fexamplz. comd fghtinfe.wsdl

L3

i -
H http://msample.cam/flightinfassd &

_§ semlrs=hbbp: £ wewnn, wid, ogd 20007 1040 Schame

< ale
<elemnent neme="Ticket"s
< e

<«Typaichemass

[]

« ¢ELEM£NTHI-1 . ¢ELEMENT->L2
TypeFlightinfol— Ticket,]

Fig. 5. Representation of the ELEMENT, TYPES and SCHEMA components

MESSAGE component will be represented by means of a <<MESSAGE>>
stereotyped class. The Name attribute will be the name of the class and will have an
order number as a tagged value. All <<MESSAGE>> classes will be related to a
<<DEFINITION>> class by means of a composition. The PART component of each
message will be represented by means of a <<PART>> stereotyped class that will
have an order number as a tagged value with the message order number as prefix. In
the example, the “GetFlightInfolnput” message has two parts which use a base type
that are represented as a class attribute. The “GetFlightInfoOutput” message contains
one part which has associated the “TypeFlightInfo” data type through a fype attribute
that has been previously defined. Therefore, the existing association between
“Flightlnfo” part and “TypeFlightInfo” element is stereotyped with <<part_type>>.
The “Checkinlnput” message contains one part which has associated the “Ticket”
data type through a element attribute that has been previously defined. Therefore, the
existing association between “Body” part and “Ticket” element is stereotyped with
<<part_element>>. The <<MESSAGE>> class will have associated, at least, one
<<PART>> class and each <<PART>> class will be associate to only one
<<MESSAGE>> class, see Fig. 6.

emassame name="GetFlightinfal npur™
irii » ngti> ««DEFINITION»>
9 Flightinin
e - LargeWNaimespase
re=tGetflightinfoCutout! httpi/ fmample.com fightinfo wsdl
t name="Flightlnfa” wpeszsdt TupeFlightlnfo "/ =

i

<sMESSAGE=> z 3
GetFlight/ nfolnput

i

<<MESSAGE== I 4
GetFlightinfodutput

<tMESSAGE>> 5

Checkinlng it
<<PART>» g 3.1 <<PART>» E) CPART>>] 4.1 CcPART>> I g1
airinedame Flighthlum Flightlnfe Pachy
Iypi = string wpE = int

cv;part_}ypes'» <apart j=lsments»
«+ELEMENT=»>; 1 “'ELEMENT”[7
TRl ght] nf o licket

Fig. 6. Representation of the MESSAGE and PART components

24 E. Marcos, V. de Castro, and B. Vela

PORTTYPE component will be represented by means of a <<PORTTYPE>>
stereotyped class. The Name attribute will be the name of the class and will have an
order number as a tagged value. The <<PORTTYPE>> classes will be related to a
<<DEFINITION>> class by means of a composition. To represent OPERATION
component, a <<OPERATION>> stereotyped classes will be used, that will have an
order number as a tagged value with the PORTTYPE order number as prefix. A
<<PORTTYPE>> class will have to be associated, at least, one <<OPERATION>>
class by means of a composition. Each operation will be associated with the messages
that it use and association stereotypes will be <<input>>, <<output>> or <<fault>>
depending on the way which messages are used, see Fig. 7.

<<DEFINITION=»
Flightlrfo

LargaiMamespsce=
hittp:ffevample.com/flightinfo wedl

valrportseryE oriTyoe s

o NaTe=*Getright nfa™s Q
1t g trsGetFlightinfolnput ™/ - T
coutput messages *tnziGetFlightinfolutput i = <<PORT IE”EW?
- AirportservPartTyps ™
ame=“Cheackin™
message=*tnsCheckinlnput®/= ?

1! 1
f i H i
: <=0PEMTDN>>% i «<OPERATION=
. GetFi i Checkln

-rmutpér.n N ——

=sinpure»

<einpubs>
<<MESSAGE>" % 3 << MESSAGE>> 4 << MESSAGE> > [5
Cetflightinfelnput Bapi GetFlightlrfodutput ™ Checkrilnput

Fig. 7. Representation of the PORTTYPE and OPERATION components

BINDING component will be represented by means of a <<BINDING>> stereotyped
class. The Name attribute will be the name of the class and will have order number as
tagged value. The <<BINDING>> classes by means of a composition to a
<<DEFINITION>> class and it will be related by means of an association to a
<<PORTTYPE>> class that it describes. In the example BINDING component is
showed without representing connection with SOAP protocol, see Fig. 8.

<binding name=*Airporthervdinding”
type= &ta

<<DEFINITION>>
Flightlnfa

targethlamespaces
Htbe: /fearnpe.comd flightinde wsdl

7

[SRR .
<<BINDING == i T <<PORT TYPE==} &
AtrportseryBinding AirportteryPor Type’

/bincings

Fig. 8. Representation of the BINDING component

Representing Web Services with UML: A Case Study

In order to represent SERVICE component a <<SERVICE>> stereotyped class will
be used. The Name attribute will be the name of the class and will have an order
number as a tagged value. The <<SERVICE>> classes will be related to a
<<DEFINITION>> class by means of a composition and must be composite, at least
of one <<PORT>> class which represent PORT component. This class will be related
by means of an association to a <<BINDING>> class. The <<PORT>> class will

have an order number as a tagged value with the SERVICE order number as prefix.

The Location attribute indicates the service URL and will be represented like a class

attribute. The <<PORT>> class will be related with only one <<BINDING>> class,
see Fig. 9.

R AL gy B
Fil gh it wics
o T RN S
' ryawn " High T d g1 Ly Pl e
Elireliag®ire Arporier B irding™: bitr i Cpeyrar ey e/ Fighf infg waes
by Baires s o Il f a0 L P B i
[] *
. [|
asSLAVLEs | 0 o ARG | d
Sighiemice — RV TR
ek Tes i
T Fighfard caPor i
Lorariam
g e pmp e Bpiein b

Fig. 9. Representation of the SERVICE and PORT components

Fig. 10 shows the UML representation of “FlightService” Web service taken as case
study, using the defined extensions.

c: —.
— T A T
AR i AL 1 3 g o = S
T W SR
= ey = =
i yisa -
ML | 0| T = ! =i
i . [l coviace
| ool PO U 0 |
Foighen b mic s S =t DLBIHE o= | 3
—e e e
L L # R 10 T | A N i] T —
-
N s g 1, N —
I [rr——
| - = = — T
j ' |= + FCET T & Trac et gy Bade L—
| darpat barfinfirg P arprasloa i I
FECTTTI | ai
el Iigia 4 a
« = L - e 01 i
Tt - [|1]
e — B
« = Tevm 1 iy
e —
eI | EF-
Tgat s
Tt =

Fig. 10. UML representation of “FlightService” Web service

26 E. Marcos, V. de Castro, and B. Vela

4 Conclusions and Further Research Topics

In this paper we have presented, by mean of a case study, an UML extension to model
Web services defined in WSDL. This proposal is integrated in MIDAS, a
methodological framework for WIS development, which proposes UML for the whole
system modelling.

Firstly we have described the WSDL metamodel using UML. Next, a Web service
which offers airport flight information and its UML graphical representation has
proposed using the defined extension.

Actually we are working in the definition of the necessary extensions for the complete
description of the service, including the connection to specific protocols (SOAP,
HTTP and MIME). Also we are studying the implementation of the proposed
extension as Add-In for Rational Rose, with the aim to allow the automatic generation
of the service WSDL description of, from a UML diagram. In addition we are
working in the incorporation of integration techniques in MIDAS that will allow us to
compose several Web Services.

Acknowledgements. This research is carried out in the framework of the projects:
EDAD (07T/0056/2003 1) financed by Autonomous Community of Madrid and
DAWIS, financed in part by the Ministry of Science and Technology of Spain (TIC
2002-04050-C02-01) and the Rey Juan Carlos University (PIGE 02-05).

References

1. Armstrong, C., Modeling Web Services with UML. OMG Web Services Workshop 2002.
Retrieved from: http://www.omg.org/news/meetings/workshops/webservices 2002.htm,
2003.

2. Booch, G., Rumbaugh, J. and Jacobson, 1., The Unified Modelling Language User Guide.
Addison Wesley, 1999.

3. Bray, T., Paoli, J, Sperberg-McQu4een, C. M. and Maler, E., Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation. Retrieved from:
http://www.w3.0org/TR/2000/REC-xml-20001006/, 2000.

4. Caceres, P., Marcos, E., Vela, B., A MDA-Based Approach for Web Information System

Development. Workshop in Software Model Engineering in conjunction with UML

Conference. October, 2003. San Francisco, USA. Accepted.

Conallen, J., Building Web Applications with UML. Addison Wesley, 2000.

6. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N. and Weerawarana, S.,
Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI. Internet
Computing, IEEE, Volume: 6, 2 , Mar/Apr 2002, pp. 86-93.

7. Eisenberg, A. and Melton, J., SOQL:1999, formerly known as SQL3. ACM SIGMOD
Record, Vol. 28, No. 1, pp. 131-138, March, 1999.

8. Fraternali, P., Tools and approaches for developing data-intensive Web applications: a
survey. ACM Computing Surveys, Vol. 31, n° 3, 1999.

9. Graham, S., Simeonov, S., Boubez, T., Davis, D., Daniels, G., Nakamura, Y. and Neyama,
R., Building Web Services with Java: Making Sense of XML, SOAP, WSDL and UDDI.
SAMS, 2002.

10. Gottschalk, K., Graham, S., Kreger, H. and Snell, J., Introduction to Web services
architecture. Retrieved from:

http://researchweb.watson.ibm.com/journal/sj/412/gottschalk.html, 2003.

b

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Representing Web Services with UML: A Case Study 27

Koch, N., Baumeister, H. and Mandel, L., Extending UML to Model Navigation and
Presentation in Web Applications. In Modeling Web Applications, Workshop of the UML
2000. Ed. Geri Winters and Jason Winters, York, England, October, 2000.

Marcos, E., Vela, B., and Cavero, J. M., Extending UML for Object-Relational Database
Design. Fourth Int. Conference on the Unified Modelling Language, UML 2001, Toronto
(Canadd), LNCS 2185, Springer Verlag, pp. 225-239, 2001.

Marcos, E., Vela, B., Céceres, P. and Cavero, J.M., MIDAS/DB: a Methodological
Framework for Web Database Design. DASWIS 2001. Yokohama (Japan), November,
2001. LNCS-2465. Springer Verlag. ISBN 3-540-44122-0. September, 2002.

Marcos, E., Vela, B. and Cavero, J.M., Methodological Approach for Object-Relational
Database Design using UML. Journal on Software and System Modeling (SoSyM).
Springer-Verlag. Ed.: R. France and B. Rumpe. Accepted to be published.

Rodriguez, J.J., Diaz, O. and Ibanez, F., Moving Web Services Dependencies at the Front-
end. Engineering Information Systems in the Internet Context 2002, pp.221-237, 2002.
Vela, B. and Marcos, E., Extending UML to represent XML Schemas. The 15th
Conference On Advanced Information Systems Engineering (CAISE’03). CAISE’03
FORUM. Klagenfurt/Velden (Austria). 16-20 June 2003. Ed: J. Eder, T. Welzer. Short
Paper Proceedings. ISBN 86-435-0549-8. 2003

W3C Web Services Description Language (WSDL) Version 1.2. W3C Working Draft 3
March 2003. Retrieved from: http://www.w3.org/TR/wsdl12/, 2003.

W3C Web Services Description Language (WSDL) Version 1.2: Bindings. W3C Working
Draft 3 March 2003. Retrieved from: http://www.w3.0org/TR/2003/WD-wsdl12-bindings-
20030124/, 2003.

W3C XML Schema Working Group. XML Schema Parts 0-2:[Primer, Structures,
Datatypes]. W3C Recommendation. Retrieved from: http://www.w3.org/TR/xmlschema-
0/, http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/, 2001.
XMLSPY 5. Retrieved from: http://www.xmlspy.com/features wsdl.html, 2003.

	Introduction
	The WSDL Metamodel
	Extended UML for Web Services Modelling
	Design Guidelines for the Definition of UML Extension
	Web Services Modelling: A Case Study

	Conclusions and Further Research Topics
	References

