
Location-Based Services in Ubiquitous Computing
Environments

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Tel: +81-3-4212-2546
Fax: +81-3-3556-1916
ichiro@nii.ac.jp

Abstract. This paper presents a framework for providing dynamically deployable
services in ubiquitous computing settings. The framework attaches physical enti-
ties and spaces with application-specific services to support and annotate them. By
using RFID-based tracking systems, it detects the locations of physical entities,
such as people or things, and deploys services bound to the entities at proper com-
puting devices near the locations of the entities. It enables location-based services
to be implemented as mobile agents and operated at stationary or mobile comput-
ing devices, which are at appropriate locations, even if the services do not have
any location-information. The paper also describes a prototype implementation of
the framework and several practical applications.

1 Introduction

As Mark Weiser envisioned [20], a goal of ubiquitous computing is to provide various
services by making multiple computers available throughout the physical environment,
but, in effect, making them invisible to the user. Another goal of ubiquitous computing is
for it to integrate the physical world with cyberspace. Actually, perceptual technologies
have made it possible to detect the presence or positions of people and any other object
we care to think about. Context-awareness, in particular user-awareness and location-
awareness, is becoming an essential feature of services that assist our everyday lives in
ubiquitous computing environments.

However, ubiquitous computing devices are not suitable for providing multiple-
purpose and personalized services, because most devices tend to have limited storage and
processing capacity and are thus incapable of internally maintaining a variety of software
and profile databases on the users. In fact, although there have been many attempts
to develop location-based services thus far, most existing location-based systems have
inherently focused on particular services, such as user navigation for visualizing locations
on maps and information providing the information relevant to the user’s current location.
As a result, it is difficult for these systems to support other services for which they were not
initially designed. Furthermore, they are often implemented in an ad-hoc manner with
centralized management. Therefore, they cannot dynamically reconfigure themselves
when new services are needed.

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 527–542, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

528 I. Satoh

This paper presents a framework for deploying and operating location-based applica-
tions to solve these problems and this is based on two key ideas. The first is to introduce
mobile agent technology as a mechanism to dynamically deploy services. Since many
computing devices in ubiquitous computing environments only have limited resources,
they cannot provide all services required due to limited computational resources, even
if they are at suitable locations. Therefore, the framework provides an infrastructure
for dynamically deploying service-provider agents to support services at computers that
need the services. The second idea is to separate application-specific services from the
infrastructure. Since each mobile agent is a programmable entity, the framework en-
ables application-specific services, including user interfaces and application logic, to be
implemented within mobile agents. Using mobile agents makes the framework indepen-
dent of any applications, because application-specific services are implemented within
mobile agents instead of the infrastructure. Since the infrastructure is responsible for
automatically deploying mobile agents at appropriate computers, they can provide their
services without any location-information.

In the remainder of this paper, we briefly review related work (Section 2), describe
our design goals (Section 3), the design of our framework, called SpatialAgent, (Section
4), and an implementation of the framework (Section 5). We describe some experiences
we had with several applications, which we used the framework to develop (Section 6).
We provide a summary and discuss some future issues (Section 7).

2 Background

There have been many attempts to develop and operate location-based services. Existing
services can be classified into two types of approaches.

The first is to make computing devices move with the user. It often assumes that
such devices are attached to positioning systems, such as Global Positioning Systems
(GPS) receivers. For example, HP’s Cooltown project [7] is an infrastructure for bridging
people, places, and things in the physical world with web resources that are used to
store information about them. It allow users to access resources via browsers running
on handheld computing devices. All the services available in the Cooltown system are
constrained by limitations with web browsers and HTTP. Stuttgart University’s NEXUS
project [5] provides a platform that supports location-aware applications for mobile
users with handheld devices, like the Cooltown project. Unlike our approach, however,
both projects are not suitable for supporting mobile users from stationary computers
distributed in a smart environment.

The second approach assumes that a space is equipped with tracking systems which
establish the location of physical entities, including people and objects, within it so
that application-specific services can be provided at appropriate computers. Cambridge
University’s Sentient Computing project [4] provides a location-aware platform using
infrared-based or ultrasonic-based locating systems in a building. Using theVNC system
[12], the platform can track the movement of a tagged entity, such as individuals and
things, so that the graphical user interfaces of the user’s applications follow the user while
he/she is moving around. Since the applications must be executed in remote servers, the
platform may have non-negligible interactive latency between the servers and hosts

Location-Based Services in Ubiquitous Computing Environments 529

the user accesses locally. Recently, a CORBA-based middleware, called LocARE, has
been proposed [10]. The middleware can move CORBA objects to hosts according to
the location of tagged objects. Although the project provides similar functionality to
that of our framework, its management is centralized and it is difficult to dynamically
reconfigure the platform when sensors are added to or removed from the environment.

Microsoft’s EasyLiving project [2] provides context-aware spaces, with a particular
focus on the home and office. A computer-vision approach is used to track users within
the spaces. Both the projects assume that locating sensors have initially been allocated
in the room, and it is difficult to dynamically configure the platform when sensors are
added to or removed from the environment, whereas our framework permits sensors to
be mobile and scatteredly throughout the space.

ETH has developed an event-based architecture for managing RFID tags [13]. Like
our framework, the architecture can link physical objects with software entities, called
virtual counterparts. However, the goal of the architecture is to develop software frame-
works that ease the development of particular applications rather than a general frame-
work for supporting various applications.Although a ubiquitous computing environment
is a distributed system whose computing devices may be dynamically added to and re-
moved from the system, the architecture is managed by a centralized server, whereas
our framework is essentially managed in a plug-and-play manner. Moreover, since the
architecture cannot migrate its software entities among ubiquitous computing devices, it
cannot effectively support moving objects in the physical world, unlike our framework.

We presented an early prototype of the present framework in a previous paper [17]
and this was just an infrastructure for allowing Java-based agents to follow moving users
through locating systems and did not encapsulate application-specific tasks into mobile
agents, unlike the framework presented in this paper. Also, since the previous system
did not support sensor mobility, it could not support all spatial linkages (Figure 1),
whereas the framework presented in this paper was designed to be based on RFID-based
sensors and it therefore permitted the mobility of sensors as well as physical entities,
such as people, objects, and computing devices. We will also present an extension of the
framework with the ability of managing various location sensors other than RFID-based
sensors in an upcoming paper [18].

3 Approach

The goal of the framework presented in this paper is to provide a general infrastructure for
supporting multiple location-aware and personalized services in ubiquitous computing
environments.

3.1 Dynamically Deployable Services

Various kinds of infrastructures have been used to construct and manage location-aware
services. However, such infrastructures have mostly focused either on a particular ap-
plication or on a specific sensor technology. By separating application-specific services
from infrastructures, our framework provides a general infrastructure for location-aware
services and enables application-specific services to be implemented as mobile agents.

530 I. Satoh

Each mobile agent can travel from computer to computer under its own control. When a
mobile agent moves to another computer, not only the code but also the state of the agent
is transferred to the destination. After arriving at a computer, agents can still continue
their processes and access the resource provided by the computer as long as long as the
security mechanisms of the computer permit this. Mobile agent technology also has the
following advantages in ubiquitous and mobile computing settings:

– Each mobile agent can dynamically be deployed at and locally executed within
computers near the position of the user. As a result, the agent can directly interact
with the user, where RPC-based approaches, which other existing approaches are
often based on, must have network latency between computers and remote servers.
It also can directly access various equipment, which belong to that device as long
as security mechanisms permit this.

– After arriving at its destination, a mobile agent can continue working without losing
the results of working, e.g., the content of instance variables in the agent’s program,
at the source computers. Thus, the technology enables us to easily build follow-me
applications [4].

– Mobile agents can help to conserve the limited resources of computing devices,
since each agent only needs to be present at the devices while they are required to
offer the services provided by that agent. Mobile agents also have the potential to
mask disconnections in some cases. Once a mobile agent is completely transferred
to a new location, it can continue its execution at the new location, even when the
new location is disconnected from the source location.

3.2 Location Sensing Systems

This framework offers a location-aware system in which spatial regions can be deter-
mined within a few square feet, that distinguishes between one or more portions of a
room or building. Existing location-based services are typically tailored to a particular
type of tracking or positioning technology, such as GPS. The current implementation of
the framework uses RFID technology as an alternate approach to locate objects. This is
because RFID technologies are expected to be widely used in product distribution and
inventory management and tags will placed on many low-cost items, including cans and
books in the near future. An RFID system consists of RF (radio frequency) readers (so-
called sensors or receivers), which detect the presence of small RF transmitters, often
called tags. Advances in wireless technology enable passive RFID tags to be scanned
over a few meters. For example, the Auto-ID center [1] and its sponsors are working
to develop flexible tags and readers operated at ultra-high frequency (915 MHz in the
US and 868 MHz in the EU). It expects that RFID tags will cost around 5 cents when
produced in bulk and RFID readers around a hundred dollar in volume. The framework
assumes that physical entities, including people, computing devices, and places will be
equipped with RFID tags so that they are entities that are automatically locatable.

3.3 Architecture

The framework consists of three parts: (1) location information servers, called LISs, (2)
mobile agents, and (3) agent hosts. The first provides a layer of indirection between

Location-Based Services in Ubiquitous Computing Environments 531

the underlying RFID locating sensing systems and mobile agents. Each LIS manages
more than one RFID reader and provides the agents with up-to-date information on the
identifiers of RFID tags, which are present in the specific places its readers cover instead
of on tags in the whole space. The second offers application-specific services, which are
attached to physical entities and places, as collections of mobile agents. The third is a
computing device that can execute mobile agent-based applications and issue specific
events to the agents running in it when RFID readers detect the movement of the physical
entities and places that the agents are bound to.

When an LIS detects a moving tag, it notifies mobile agents attached to it about the
network addresses and capabilities of the candidate hosts that are near its location. Each
of these agents selects one host from the candidate agent hosts recommended by the
LIS and migrate to the selected host. The capabilities of a candidate host do not always
satisfy all the requirements of an agent. Each agent does not need to have to know any
information about the network addresses and locations of devices, which it may migrate
to. This framework assumes that each agent itself should decide, on the basis of to its
own configuration policy, whether or not it will migrate itself to the destination and adapt
itself to the destination’s capabilities.

Our final goal is widespread building-wide and city-wide deployment. It is almost
impossible to deploy and administer a system in a scalable way when all of the control
and management functions are centralized. LISs are individually connected to other
servers in a peer-to-peer manner and exchange information with one another. LISs and
agent hosts may be mobile and frequently shut down. The framework permits each LIS
to run independently of the other LISs and it offers an automatic mechanism to register
agent hosts and RFID readers. The mechanism requires agent hosts to be equipped with
tags so that they are locatable.

3.4 Narrowing the Gap between Physical and Logical Mobilities

This framework can inform mobile agents attached to tags about their appropriate desti-
nations according to the current positions of the tags. It supports three types of linkages
between a physical entity such as a person, thing, or place, and one or more mobile
agents as we can see in Figure 1.

– In the first linkage, a moving entity carries more than one tagged agent host and a
space contains a place-bound RFID tag and readers. When the RFID reader detects
the presence of a tag that is bound to one of the agent hosts, the framework instructs
the agents that are attached to the tagged place to migrate to the visiting agent hosts
to offer the location-based services the place has as we can see in Figure 1 (a).

– In the second linkage, tagged agent hosts and RFID readers are allocated. When a
tagged moving entity enters the coverage area of one of the readers, the framework
instructs the agents that are attached to the entity to migrate to the agent hosts within
the same coverage area to offer the entity-dependent services the entity has as we
can see in Figure 1 (b).

– In the third linkage, an entity carries an RFID reader and more than one agent host
and a space contains more than one place-bound tag. When the entity moves to a
nearby place-bound tag and the reader detects the presence of the tag within its

532 I. Satoh

stationary

sensor

Step 1

the movement of

a tagged entity

Step 2

cell

(b) moving tagged entity

and stationary sensor

tag tag

agent

host

agent

host

tag

agent

host

agent

host

(c) moving tagged

entity with sensor

moving

sensor

agent

host

Step 1 the movement of an agent

host with a sensor
tag

the migration of an

agent to

the visiting host

Step 2

cell

cell

tag

agent

host

agent

host

place-

bound

tag

place-bound tag

moving

sensor

Step 1

Step 2

(a) moving agent host

and stationary sensor

stationary

sensor

agent

host

the movement of

an agent host

tag

the migration of an

agent to the

visiting host

cell

cell

stationary

sensor

agent

host tag

cell

the migration of an agent to the

host near

the entity

tag

Fig. 1. Three linkages between physical and logical entities

coverage area, the framework instructs the agents that are attached to the tagged
place to migrate to the visiting agent hosts to offer the location-dependent services
the place has, as shown as we can see in Figure 1 (c).

Note that our framework does not have to distinguish between mobile and stationary
computing devices and between mobile and stationary location-sensing systems.

4 Design

This section presents the design for the SpatialAgent framework and describes a pro-
totype implementation of the framework. Figure 2 outlines the basic structure of the
framework.

4.1 Location Information Server

LISs are responsible for managing location sensing systems and recommending agents
devices at which the agents provide their services. They can run on a stationary or mobile
computer and provide all LISs that can run on a stationary or mobile computer and that
have the following functionalities:

Location-Based Services in Ubiquitous Computing Environments 533

Location Server A Location Server B

directory

database
directory

database

profile

handler

profile

handler

event handlerevent handler

abstraction

layer

abstraction

layer
abstraction

layer

peer-to-peer

communication

agent

migration

locating sensor locating sensor locating sensor

agent host agent host agent host

desklamp-

bound agent
user-bound agent

MobileSpaces MobileSpaces MobileSpaces tag

tagtag
tag

tag

tag

tag

cell 3cell 1 cell 2

user migration

Fig. 2. Architecture of SpatialAgent Framework

RFID-based location model. This framework represents the locations of objects with a
symbolic names to specifying the sensing ranges of RFID readers, instead of geograph-
ical models. Each LIS manages more than one RFID reader that detects the presence
of tags and maintains up-to-date information on the identities of those that are within
the zone of coverage. This is achieved by polling the readers or receiving events issued
by the readers. An LIS does not require any knowledge on other LISs, but it needs to
be able to exchange its information with others through multicast communication. To
hide the differences between the underlying locating systems, each LIS maps low-level
positional information from the other LISs into information in a symbolic model of
location. An LIS represents an entity’s location in symbolic terms of the RFID reader’s
unique identifier that detects the entity’s tag. We call each RFID reader’s coverage a cell,
as in the models of location reported by several other researchers [9]. Multiple RFID
readers in the framework do not have to be neatly distributed in spaces such as rooms
or buildings to completely cover the spaces; instead, they can be placed near more than
one agent host and the reader coverage can overlap.

Location management. Each LIS is responsible for discovering mobile agents bound
to tags within its cells. Each maintains a database in which it stores information about
each of the agent hosts and each of the mobile agents attached to a tagged entity or place.
When an LIS detects a new tag in a cell, the LIS multicasts a query that contains the
identity of the new tag and its own network address to all the agent hosts in its current
sub-network. It then waits for reply messages from the agent hosts. Here, there are two
possible cases: the tag may be attached to an agent host or the tag may be attached to a
person, place, or thing other than an agent host.

– In the first case, the newly arriving agent host will send its network address and
device profile to the LIS; the profile describes the capabilities of the agent host, e.g.,
input devices and screen size. After receiving a reply message, the LIS stores the
profile in its database and forwards the profile to all agent hosts within the cell.

534 I. Satoh

– In the second case, agent hosts that have agents tied to the tag will send their network
addresses and the requirements of acceptable agents to the LIS; requirements for
each agent specify the capabilities of the agent hosts that the agent can visit and
perform its services at.

The LIS then stores the requirements of the agents in its database and moves the agents
to appropriate agent hosts in a manner we will discuss later. If the LIS does not have
any reply messages from the agent hosts, it can multicast a query message to other LISs.
When the absence of a tag is detected in a cell, each LIS multicasts a message with the
identifier of the tag and the identifier of the cell to all agent hosts in its current sub-
network. Figure 3 shows the sequence for migrating an agent to a suitable host when an
LIS detects the presence of a new tag.

step 3:

query message

about the tag's ID

step 1:

the movement of

an agent host

tag

cell

sensor

tag

Location Server A

directory

database

profile

handler

sensor-

abstraction

layer

Location Server B

directory

database

profile

handler

sensor-

abstraction

layer

agent

host
agent

host

step 3:

query message

about the tag's ID

step 5:

query message

about the tag's ID

step 2:

tag

detection

agent

host

step 6:

query message

about the tag's ID

step 7:

reply message

step 5:

query message

about the tag's ID

step 4:

host

profile

step 8:

host profile

step 9:

agent migration

Fig. 3. Agent discovery and deployment

Spatial-dependent deployment of agents. We will now explain how the framework
deploys agents at suitable agent hosts. When an LIS detects the movement of a tag
attached to a person or thing to a cell, it searches its database for agent hosts that are
present in the current cell of the tag. It also selects candidate destinations from the set
of agent hosts within the cell, according to their respective capabilities. The framework
offers a language based on CC/PP (composite capability/preference profiles) [21]. The
language is used to describe the capabilities of agent hosts and the requirements of
mobile agents in an XML notation. For example, a description contains information on
the following properties of a computing device: vendor and model class of the device
(i.e, PC, PDA, or phone), its screen size, the number of colors, CPU, memory, input
devices, secondary storage, and the presence/absence of loudspeakers. The framework
also allows each agent to specify the preferable capabilities of agent hosts that it may
visit as well as the minimal capabilities in a CC/PP-based notation. Each LIS is able to
determine whether or not the device profile of each agent host satisfies the requirements
of an agent by symbolically matching and quantitatively comparing properties.

Location-Based Services in Ubiquitous Computing Environments 535

The LIS then unicasts a navigation message to each of the agents that are bound to
the tagged entities or places, where the message specifies the profiles of those agent hosts
that are present in the cell and satisfy the requirements of the agent. The agents are then
able to autonomously migrate to the appropriate hosts. When there are multiple candidate
destinations, each of the agents that is tied to a tag must select one destination based on
the profiles of the destinations. When one or more cells geographically overlap, a tag
may be in multiple cells at the same time and agents tied to that tag may then receive
candidate destinations from multiple LISs. However, since the message includes the
network address of the LIS, the agents can explicitly ask it about the cell ranges. Our
goal is to provide physical entities and places with computational functionality from
locations that are near them. Therefore, if there are no appropriate agent hosts in any
of the cells at which a tag is present but there are some agent hosts in other cells, the
current implementation of our framework forces agents tied to the tag to move to hosts
in different cells.

4.2 Mobile Agent-Based Service-Provider

The framework encapsulates application-specific services into mobile agents so that it
is independent of any applications and can support multiple services. In the appendix
of this paper, each mobile agent is constructed as a collection of Java objects and is
equipped with the identifier of the tag to which it is attached.1 Each is a self-contained
program and is able to communicate with other agents. An agent that is attached to a user
always internally maintains that user’s personal information and carries all its internal
information to other hosts. A mobile agent may also have one or more graphical user
interfaces for interaction with its users. When such an agent moves to other hosts, it can
easily adjust its windows to the new host’s screen by using the compound document
framework for the MobileSpaces system that was presented in our previous paper [15].

4.3 Agent Host

Each agent host must be equipped with a tag. It has two forms of functionality: one for
advertising its capabilities and the other for executing and migrating mobile agents. The
current implementation assumes that LISs and agent hosts can be directly connected
through a wired LAN such as Ethernet or a wireless LAN such as IEEE802.11b. When
a host receives a query message with the identifier of a newly arriving tag from an LIS,
it replies with one of the following three responses: (i) if the identifier in the message is
identical to the identifier of the tag to which it is attached, it returns profile information
on its capabilities to the LIS; (ii) if one of the agents running on it is tied to the tag, it
returns its network address and the requirements of the agent; and (iii) if neither of the
above cases applies, it ignores the message.

The current implementation of this framework is based on a Java-based mobile agent
system called MobileSpaces [14].2 Each MobileSpaces runtime system is built on the

1 Appendix describes programming interfaces of agents.
2 The framework itself is independent of the MobileSpaces mobile agent system and can thus

work with other Java-based mobile agent systems.

536 I. Satoh

Java virtual machine, which conceals differences between the platform architecture of
the source and destination hosts, such as the operating system and hardware. Each of
the runtime systems moves agents to other agent hosts over a TCP/IP connection. The
runtime system governs all the agents inside it and maintains the life-cycle state of each
agent. When the life-cycle state of an agent changes, e.g., when it is created, terminates,
or migrates to another host, the runtime system issues specific events to the agent. This
is because the agent may have to acquire various resources or release them, such as
files, windows, or sockets, which it had previously captured. When a notification on
the presence or absence of a tag is received from a LIS, the runtime system dispatches
specific events to the agents that are tied to that tag and these run inside it.

5 Implementation

The framework presented in this paper was implemented in Sun’s Java Developer Kit,
version 1.1 or later versions, including Personal Java. This section discusses some fea-
tures of the current implementation.

5.1 Management of Locating Systems

The current implementation supports four commercial RFID systems: RF Code’s Spider
system, Alien Technology’s 915Mhz RFID-tag system, Philips’ I-Code system, and
Hitachi’s mu-chip system. The first system provides active RF-tags, which periodically
emit an RF-beacon that conveys their unique identifier (every second) via 305 MHz-radio
pulse. The system allows us to explicitly control the omnidirectional range of each of the
RF readers to read tags within a range of 1 to 20 meters. The Alien Technology system
provides passive RFID-tags and its readers periodically scan for present tags within a
range of 3 meters by sending a short 915 MHz-RF pulse and waiting for answers from
the tags. The Philips and Hitachi RFID systems are passive RFID tag systems that can
sense the presence of tags within a range of a few centimeters. Although there are many
differences between the four, the framework abstracts these.

5.2 Performance Evaluation

Although the current implementation of the framework was not built for performance,
we measured the cost of migrating a 3-Kbytes agent (zip-compressed) from a source
host to the destination host recommended by the LIS. This experiment was conducted
with two LISs and two agent hosts, each of which was running on one of four computers
(Pentium III-1GHz with Windows 2000 and JDK 1.4), which were directly connected via
an IEEE802.11b wireless network. The latency of an agent’s migration to the destination
after the LIS had detected the presence of the agent’s tag was 410 msec and the cost of
agent migration between two hosts over a TCP connection was 42 msec. The latency
included the cost of the following processes: UDP-multicasting of the tags’ identifiers
from the LIS to the source host, TCP-transmission of the agent’s requirements from the
source host to the LIS, TCP-transmission of a candidate destination from the LIS to

Location-Based Services in Ubiquitous Computing Environments 537

the source host, marshaling the agent, migrating the agent from the source host to the
destination host, unmarshaling the agent, and security verification. We believe that this
latency is acceptable for a location-aware system used in a room or building.

5.3 Security and Privacy

Security is essential in mobile agent computing. The framework can be built on many
Java-based mobile agent systems with the Java virtual machine. Therefore, it can directly
use the security mechanism of the underlying mobile agent system. The Java virtual
machine can explicitly restrict agents so that they can only access specified resources to
protect hosts from malicious agents. To protect against the passing of malicious agents
between agent hosts, the MobileSpaces system supports a Kerberos-based authentication
mechanism for agent migration. It authenticates users without exposing their passwords
on the network and generates secret encryption keys that can selectively be shared
between mutually suspicious parties.

The framework only maintains per-user profile information within those agents that
are bound to the user. It promotes the movement of such agents to appropriate hosts near
the user in response to his/her movement. Since agents carry their users’ profile infor-
mation within them, they must protect such private information while they are moving
over a network.3 The MobileSpaces system can transform agents into an encrypted
form before migrating them over the network and decrypt them after they arrive at their
destinations. Moreover, since each mobile agent is just a programmable entity, it can
explicitly encrypt its particular inner fields and migrate itself with the fields along with
its own cryptographic procedure, except for its secret keys.

6 Applications

This section presents several typical location-based and personalized services that were
developed through the framework. Note that these services can be executed at the same
time, since the framework itself is independent of any application-specific services and
each service is implemented within mobile agents.

6.1 Location-Bound Universal Remote Controller

The first example corresponds to Figure 1 (a) and allows us to use a PDA to remotely
control nearby electric lights in a room. Each light was equipped with a tag and was
within the range covered by an RFID reader in the room. We controlled power outlets
for lights through a commercial protocol called X10. In both approaches described here,
the lights were controlled by switching their power sources on or off according to the
X10 protocol. In this system, place-bound controller agents, which can communicate
with X10-base servers to switch lights on or off, are attached to locations with room
lights. Each user has a tagged PDA, which supports the agent host with WindowsCE and

3 The framework itself cannot protect agents from malicious hosts, because this problem is beyond
the scope of this paper.

538 I. Satoh

wireless LAN interface. When a user with a PDA visits a cell that contains a light, the
framework moves a controller agent to the agent host of the visiting PDA. The agent,
now running on the PDA, displays a graphical user interface to control the light. When
the user leaves that location, the agent automatically closes its user interface and returns
to its home host.

RF-tag

attached to

a desklamp

RF-reader

PDA

(Agent Host)

Desklamp

X10 Appliance

Module

Controller

Agent

Fig. 4. Controlling desk lamp from PDA

6.2 Mobile Personal Assistance

The second example corresponds to Figure 1 (b) and offers a user assistant agent that
follows its user and maintains profile information about him/her inside itself, so that
he/she can always assist the agent in a personalized manner anywhere. Suppose that a
user has a 915MHz-RFID tag and is moving on front of a restaurant, which offers an
RFID reader and an agent host with a touch-screen. When the tagged user enters inside
the coverage area of the reader, the framework enables his/her assistant agents to move to
the agent host near his/her current location.After arriving at the host, the agent accesses a
database provided in the restaurant to obtain a menu from the restaurant. 4 It then selects
appropriate meal candidates from the menu according to his/her profile information,
such as favorite foods and recent experiences, stored inside it. It next displays only the
list of selected meals on the screen of its current agent host in a personalized manner
for him/her. Figure 5 shows that a user’s assistant agent runs on the agent host of the
restaurant and seamlessly embeds a list of pictures, names, and prices of selected meal
candidates with buttons for ordering them into its graphical user interface. Since a mobile
agent is a program entity, we can easily define a more intelligent assistant agent.

4 The current implementation of the database maintains some information about each available
food, such as name and price, in an XML-based entry.

Location-Based Services in Ubiquitous Computing Environments 539

Touch-screen

RFID antenna

915MHz RFID

for user

915MHz RFID

reader

Fig. 5. Screenshot of follow-me user assistant agent for selecting its user’s favorite sushi from the
menu database of a restaurant that the user is in front of

6.3 User Navigation System

We developed a user navigation system that assists visitors to a building. Several re-
searchers have reported on other similar systems [3,5]. In our system, tags are dis-
tributed to several places within a building, such as its ceilings, floors, and walls. As
we can see from Figure 1 (c), each visitor carries a wireless-LAN enabled tablet PC,
which is equipped with an RFID reader to detect tags, and includes an LIS and an agent
host. The system initially deploys place-bound agents to invisible computers within the
building. When a tagged position is located by a cell of the moving RFID reader, the LIS
running on the visitor’s tablet PC detects the presence of the tag. The LIS detects the
place-bound agent that is tied to the tag. It then instructs the agent to migrate to its agent
host and provide the agent’s location-dependent services at the host. The system enables
more than one agent tied to a place to move to the table PC. The agents then return to
their home computers and other agents, which are tied to another place, may move to
the tablet PC. Figure 6 shows a place-bound agent to display a map of its surrounding
area on the screen of a tablet PC.

The positions of RF-readers

RF-reader

Tablet PC

(Agent Host)

Place-bound

Agent (Map Viewer)

RF-tag

IEEE

802.11b

(A) (B)

Fig. 6. (A) Positions of RF-tags in floor (B) and screen-shot of map-viewer agent running on table
PC

540 I. Satoh

7 Conclusion

We presented a framework for the development and management of location-aware
applications in mobile and ubiquitous computing environments. The framework pro-
vides people, places, and things with mobile agents to support and annotate them. Using
location-tracking systems, the framework can migrate mobile agents to stationary or mo-
bile computers near the locations of the people, places, and things to which the agents
are attached. The framework is decentralized and it is a generic platform independent of
any higher-level applications and locating systems and supports stationary and mobile
computing devices in a unified manner. We also designed and implemented a proto-
type system of the framework and demonstrated its effectiveness in several practical
applications.

However, there are further issues that need to be resolved. Since the framework
presented is general-purpose, we would need to apply it to specific applications in future
work, as well as the three applications presented in this paper. The location model of
the framework was designed for operating real location-sensing systems in ubiquitous
computing environments. We plan to design a more elegant and flexible world model that
represents the locations of people, things, and places in the real world by incorporating
existing spatial database technologies.

References

1. Auto-ID center: http://www.autoidcenter.org/main.asp
2. B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer: EasyLiving: Technologies for Intel-

ligent Environments, Proceedings of International Symposium on Handheld and Ubiquitous
Computing, pp. 12–27, 2000.

3. K. Cheverst, N. Davis, K. Mitchell, and A. Friday: Experiences of Developing and Deploying
a Context-Aware Tourist Guide: The GUIDE Project, Proceedings of Conference on Mobile
Computing and Networking (MOBICOM’2000), pp. 20–31, ACM Press, 2000.

4. A. Harter, A. Hopper, P. Steggeles, A. Ward, and P. Webster: The Anatomy of a Context-
Aware Application, Proceedings of Conference on Mobile Computing and Networking (MO-
BICOM’99), pp. 59–68, ACM Press, 1999.

5. F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm: Next Century Chal-
lenges: Nexus – An Open Global Infrastructure for Spatial-Aware Applications, Proceedings
of Conference on Mobile Computing and Networking (MOBICOM’99), pp. 249–255, ACM
Press, 1999).

6. K. Kangas and J. Roning: Using Code Mobility to Create Ubiquitous and Active Augmented
Reality in Mobile Computing, Proceedings of Conference on Mobile Computing and Net-
working (MOBICOM’99), pp. 48–58, ACM Press, 1999.

7. T. Kindberg, et al: People, Places, Things: Web Presence for the Real World, Technical Report
HPL-2000-16, Internet and Mobile Systems Laboratory, HP Laboratories, 2000.

8. B. D. Lange and M. Oshima: Programming and Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

9. U. Leonhardt, and J. Magee: Towards a General Location Service for Mobile Environments,
Proceedings of IEEE Workshop on Services in Distributed and Networked Environments, pp.
43–50, IEEE Computer Society, 1996.

Location-Based Services in Ubiquitous Computing Environments 541

10. D. Lopez de Ipina and S. Lo: LocALE: a Location-Aware Lifecycle Environment for Ubiqui-
tous Computing, Proceedings of Conference on Information Networking (ICOIN-15), IEEE
Computer Society, 2001.

11. N. Minar, M. Gray, O. Roup, R. Krikorian, and P. Maes: Hive: Distributed agents for network-
ing things, Proceedings of Symposium on Agent Systems and Applications / Symposium on
Mobile Agents (ASA/MA’99), IEEE Computer Society, 2000.

12. T. Richardson, Q, Stafford-Fraser, K. Wood, A. Hopper: Virtual Network Computing, IEEE
Internet Computing, Vol. 2, No. 1, 1998.

13. K. Romer, T. Schoch, F. Mattern, and T. Dubendorfer: Smart Identification Frameworks for
Ubiquitous ComputingApplications, IEEE International Conference on Pervasive Computing
and Communications (PerCom’03), pp.253–262, IEEE Computer Society, March 2003.

14. I. Satoh: MobileSpaces: A Framework for Building Adaptive Distributed Applications Using
a Hierarchical Mobile Agent System, Proceedings of International Conference on Distributed
Computing Systems (ICDCS’2000), pp. 161–168, IEEE Computer Society, 2000.

15. I. Satoh: MobiDoc: A Framework for Building Mobile Compound Documents from Hier-
archical Mobile Agents, Proceedings of Symposium on Agent Systems and Applications /
Symposium on Mobile Agents (ASA/MA’2000), LNCS, Vol. 1882, pp. 113–125, Springer,
September 2000.

16. I. Satoh: Flying Emulator: Rapid Building and Testing of Networked Applications for Mobile
Computers, Proceedings of International Conference on Mobile Agents (MA’01), LNCS, Vol.
2240, pp. 103–118, Springer, December 2001.

17. I. Satoh: Physical Mobility and Logical Mobility in Ubiquitous Computing Environments,
Proceedings of International Conference on Mobile Agents (MA’02), LNCS, Vol. 2535, pp.
186–202, Springer, October 2002.

18. I. Satoh: Linking Physical Worlds to Logical Worlds with Mobile Agents, Proceedings of In-
ternational Conference on Mobile Data Management (MDM 2004), IEEE Computer Society,
January 2004.

19. R. Want, A. Hopper, A. Falcao, and J. Gibbons: The Active Badge Location System, ACM
Transactions on Information Systems, vol.10, no.1, pp. 91–102 ACM Press, 1992.

20. M. Weiser: The Computer for the 21st Century, Scientific American, pp. 94–104, September,
1991.

21. World Wide Web Consortium (W3C): Composite Capability/Preference Profiles (CC/PP),
http://www.w3.org/TR/NOTE-CCPP, 1999.

Appendix: Service Provider Programs

This section explains the programming interface for service providers, which are imple-
mented as mobile agents. Every agent program must be an instance of a subclass of the
abstract class TaggedAgent as follows:

1: class TaggedAgent extends Agent implements Serializable {
2: void go(URL url) throws NoSuchHostException { ... }
3: void duplicate() throws IllegalAccessException { ... }
4: void destroy() { ... }
5: void setTagIdentifier(TagIdentifier tid) { ... }
6: void setAgentProfile(AgentProfile apf) { ... }
7: URL getCurrentHost() { ... }
8: boolean isConformableHost(HostProfile hfs) { ... }
9: CellProfile getCellProfile(CellIdentifier cid)

10: throws NoSuchCellException { ... }
11:
12: }

542 I. Satoh

Let us explain some of the methods defined in the TaggedAgent class.An agent executes
the go(URL url) method to move to the destination host specified as the url by its
runtime system. Theduplicate()method creates a copy of the agent, including its code
and instance variables. The setTagIdentifier method ties the agent to the identity
of the tag specified as tid. Each agent can specify a requirement that its destination
hosts must satisfy by invoking the setAgentProfile() method, with the requirement
specified as apf. The class has a service method named isConformableHost(), which
the agent uses to decide whether or not the capabilities of the agent hosts specified as
an instance of the HostProfile class satisfy the requirements of the agent. Also, the
getCellProfile() method allows an agent to investigate the measurable range and
types of RFID readers specified as cid.5

Each agent can subscribe to the types of events they are interested in and have more
than one listener object that implements a specific listener interface to hook certain
events. The following program is the definition of a lister object for receiving events
issued before or after changes in its life-cycle state or movements of its tag.

1: interface TaggedAgentListener extends AgentEventListener {
2: // invoked after creation at url
3: void agentCreated(URL url);
4: // invoked before termination
5: void agentDestroying();
6: // invoked before migrating to dst
7: void agentDispatching(URL dst);
8: // invoked after arrived at dst
9: void agentArrived(URL dst);

10: // invoked after the tag arrived at another cell
11: void tagArrived(HostProfile[] apfs, CellIdentifier cid);
12: // invoked after the tag left rom the current cell
13: void tagLeft(CellIdentifier cid);
14: // invoked after an agent host arrived at the current cell
15: void hostArrived(AgentProfile apfs, CellIdentifier cid);
16:
17: }

The above interface specifies the fundamental methods that are invoked by the runtime
system when agents are created, destroyed, or migrate to another agent host. If a tagged
entity or place is detected for the first time, the agent associated with that object or
place has to be instantiated and then its agentCreated() method is invoked. Also, the
tagArrived() callback method is invoked after the tag to which the agent is bound
has entered another cell, to obtain the device profiles of agent hosts that are present in
the new cell. The tagLeft() method is invoked after the tag is no longer in a cell for
a specified period of time. The agentDispatching() method is invoked before the
agent migrates to another host and the agentArrived() method is invoked after the
agent arrives at the destination.

5 The identifier of each RFID reader can be represented in a string format so that the framework
can easily manage various RFID systems even when the identifiers of readers in these systems
are different.

	Introduction
	Background
	Approach
	Dynamically Deployable Services
	Location Sensing Systems
	Architecture
	Narrowing the Gap between Physical and Logical Mobilities

	Design
	Location Information Server
	Mobile Agent-Based Service-Provider
	Agent Host

	Implementation
	Management of Locating Systems
	Performance Evaluation
	Security and Privacy

	Applications
	Location-Bound Universal Remote Controller
	Mobile Personal Assistance
	User Navigation System

	Conclusion

