
M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 59–74, 2003.

© Springer-Verlag Berlin Heidelberg 2003

Service Discovery and Orchestration for Distributed
Service Repositories

Ioannis Fikouras and Eugen Freiter

Bremen Institute of Industrial Technology and Applied Work Science (BIBA),
Hochschulring 20, 28359 Bremen, Germany
���������	
�
�
����
�����
��
����������

�
�
����
�����
��

Abstract. Driven by the need for transparent discovery and orchestration of
composite services out of elementary services, this paper introduces an innova-
tive approach to Distributed Composite Services Orchestration and Discovery.
The proposed concept is based on Variant Configuration theory and Distributed
Service Repositories. The authors proceed to describe parts of the specification
of a middleware platform based on the proposed concept capable of addressing
the need for seamless discovery and composition of distributed services. This
study was conducted as part of project NOMAD (IST-2001-33292) and pres-
ents the concepts behind the NOMAD Composite Service Configurator and its
integration in the Distributed Service Repository.

1 Introduction

Significant technological advances in recent years in the areas of mobile devices and
wireless communications were accompanied by infiltration of all aspects of our lives
by all sorts of new Internet based services. Mobile communications and the Internet
have been the two major drivers of consumer demand for new services in the last dec-
ade of the twentieth century [1].

Mobile phones are already pervasive in all major developed economies as well as
in an increasing number of developing ones. The average mobile penetration in
Europe in 2002 reached 72.4 per cent [2] and internet penetration in EU homes
reached 38 per cent in December 2001 [3]. In November 2001, almost 50 per cent of
the population over 15 years used the Internet either stationary or mobile. The rate of
Internet take up by businesses is far higher at almost 90 per cent of enterprises with
more than ten employees. Furthermore, it is forecasted that by 2005 an increasing
portion of Internet users will be using wireless devices such as web-enabled cell
phones and PDAs to go online and the number of worldwide Internet users will nearly
triple to 1.17 billion [4]. By that time, a variety of different wireless network plat-
forms with different properties, capable of transporting Internet traffic will be avail-
able [5]. In addition, the turn of operators towards license-free frequencies [6] and
their eventual congestion will lead to the realisation of alternative dynamic network
structures, namely Internet compatible, multi-hop, ad-hoc networks.

60 I. Fikouras and E. Freiter

1.1 Problem Statement and Motivation

In spite of repeated past forecasts of the contrary, mobile Internet access today ac-
counts for less than 10 per cent of those online globally even though the number of
mobile users greatly exceeds the number of Internet-users [8]. However, it is expected
that as early as 2005 over one half of the Internet population will consist of mobile
access devices [4]. In countries with low Internet penetration wireless Internet devices
will be the primary or only Internet access means.

The advent of the mobile Internet depends on the corresponding evolution of a new
type of services vital for providing concrete added-value to users [9] resulting in mo-
tivation to adopt the new technology. In an environment with the potential for true
global user mobility, a paradigm shift from stationary to mobility aware services and
from a provider or operator-centric service model to a user-centric view [10] will be
witnessed. Main characteristics of the new paradigm are:
•� User centricity: Use of all available means to free the user from established re-

stricting structures in order to offer the best possible service.
•� Mobility awareness: Use of all data concerning the user’s position, movement and

direct environment or context for the provision of services.

A Composite Service Discovery technology addressing these issues was researched

and developed by Project NOMAD (IST-2001-33292). This paper will present the

concepts behind the NOMAD Composite Service Configurator and its integration in a

Distributed Service Repository.

Sections 2 and 3 of this paper give an overview of existing approaches to Service

Orchestration and Distributed Service Repositories. Section 4 proceeds to explain the

NOMAD Composite Services data model while Section 5 describes how a configura-

tion engine for Composite Services can be integrated in an LDAP repository. Section

6 provides the overall conclusions.

2 Approaches to Service Orchestration

Orchestration of Services is usually based on the concepts of Knowledge-based Vari-

ant Configuration. Case-based, rules-based and the Object Oriented approach includ-

ing the concept of “Lean Configuration” are briefly illustrated in the following sec-

tions.

2.1 Knowledge-Based Variant Configuration

Knowledge-based Variant Configuration [18] is a process were complex products are

composed out of elementary components. A Configurator is an expert system that

supports this process and thereby uses predefined goals as well as expert knowledge.

Design goals can be constraints, functional requirements, predetermined components

or various quality criteria [19]. Such systems do not follow a single predefined

method, but rather a strategy based on a series of small steps, each step representing a

certain aspect or assumption leading to the configuration of the composite service.

Service Discovery and Orchestration for Distributed Service Repositories 61

Configuration is therefore considered as the solution to a single exercise and not the
solution to a whole problem or problem class that has first to be methodically ana-
lysed. This implies the following:
•� The set of all possible solutions is finite.
•� The solution sought is not innovative, but rather is a subset of the available parts.
•� The configuration problem is known and well defined.

2.2 Rules-Based Configuration

Existing configuration systems like JSR 94 [33] are based on knowledge bases con-
sisting of a description of all the available components (objects) and an accompanying
set of rules that define how specific objects should behave under defined conditions
and thereby control the flow of configuration [24].

Consequently configuration rules are structured according to the “if-then” principle

familiar from various programming languages. The “if” part of a rule contains the

conditions under which the actions defined in the “then” part rule should be applied

[30]. A configuration problem described using rules based concepts is composed of

the following three elements [20]:

•� Facts describe conditions that are necessary for configurations.

•� Rules describe the relationships between facts and describe actions to be takes.

•� Enquiries describe the problem to be solved.

The aim is to acquire answers to the questions posed with the help of the rules de-

fined based on the known facts [20].

Rule-based systems are easy to implement due to the simplicity of the individual

rules, but are hard to maintain after reaching a certain complexity. Production rules

based systems are maintained by highly qualified knowledge engineers that must have

considerable knowledge on the products in question and on the configurations system

and most importantly the defined rules. Furthermore rule-based systems are usually

restricted to a single knowledge domain in order to prevent the exponential complex-

ity necessary for multiple rules-sets for multiple domains.

2.3 Case-Based Configuration

Case-based orchestration makes use of libraries containing similar problems and pre-

defined solutions in order to formulate new composite services [34] thereby reducing

the configuration problem to the following steps:

•� The search for a similar case.

•� The transformation of the original case to fit the current requirements.

The second step is where case-based configuration differs from other case-based

methods, i.e. case-based reasoning or diagnosis where no such transformation is

needed [32]. Collected knowledge can be used for further configuration under the

following conditions:

•� Creation and maintenance of appropriately organised libraries containing prob-

lems, solutions as well as the used process.

62 I. Fikouras and E. Freiter

•� Existence of algorithms and heuristics for the selection of appropriate cases from
the library.

•� The integration of case-knowledge in the configuration process. This includes pro-
cedures for checking case consistency and case transformation [31].
Configurations created on the basis of such a library can often be less efficient than

others created with more conventional means. This is mainly due two the following
characteristics of case-based methods:
•� Resulting configurations are not fully compliant to the current requirements, but

rather adapted products that were originally designed for different requirements.
•� Changes in the knowledge domain can not be integrated in the case library without

changing all relevant cases resulting in configurations that are sometimes not up-
to-date [31].

2.4� Object-Oriented Variant Configuration

Object-oriented Variant Configuration is based on the concept of iterative composi-
tion of the final product out of a set of elementary components that have been previ-
ously organised according to a product data model into a structure, known as the ob-
ject hierarchy that contains all knowledge related to the product in question. The
relationships between components and how they fit together are described with the
help of constraints.

Constraints are constructs connecting two unknown or variable components and
their respective attributes, which have predefined values (taken from a specific
knowledge domain). The constraint defines the values the variables are allowed to
have, but also connects variables, and more importantly, defines the relationship be-
tween the two values [21]. In other words, constraints contain general rules that can
be applied to make sure that specific components are put together in a correct fashion
without having to specify any component-related rules or calculations [21]. The con-
straint satisfaction problem is defined as follows [22]:
•� There is a finite set of variables X = {x1, …,xn}.

•� For each variable xi, there exists a finite set Di of possible values (its domain).

•� There is also a set of constraints, which restrict the possible values that these vari-

ables are allowed to take at the same time.

The object hierarchy contains all relevant objects and the relationships between

them in an “is-a” relationship that defines types of objects, object classes and sub-

classes, and their properties. The configuration process creates objects on the basis of

this information according to the products being configured. In one specific hierarchy

(as depicted in the following figure for the configuration of automobiles, classes for

specific car types (i.e. coupé, minivan, etc.) are connected by “is-a” relationships to

the main “car” class. This hierarchy also allows the breakdown of a product into com-

ponents with the help of further “has-parts” relationships. These “has-parts” relation-

ships are the basis for the decision-making process employed to create new configu-

rations. An example of such a relationship would be the relationship between a

chassis and a wheel. A chassis can be connected to up to four wheels in a passenger

car, but the wheels are represented only once, with an appropriate cardinality (see

Fig.1).

Service Discovery and Orchestration for Distributed Service Repositories 63

�����

��	�
�	

���

�
�����

�����	�	�

������

�

�

�
��� ��

Fig. 1. Example object hierarchy of a specific product domain

The greatest hurdle to be resolved when creating new configurations is the fact that
the software is required to make decisions that are not based on available information.
Such an action can possibly lead to a dysfunctional composition or simply to a com-
bination that does not conform to user requirements. In this case all related configura-
tion steps have to be undone (backtracking) in order to return to a valid state. The
longer it takes for the configuration to detect that a mistake has been made, the more
difficult it is to correct the error in question [19]. The configuration process itself is
composed of three phases [24]:
•� Analysis of the product in order to define possible actions.
•� Specification of further configuration actions.
•� Execution of specified actions.

These actions are:
•� Disassembly of the product into its components. This is meant to reduce the com-

plexity of the problem and create a large number of smaller objectives in the man-
ner of conventional top-down specification.

•� ���������	
��	��	
�
�����
�������	
��
�����������	
����������	�
���������	�
��
�

���
������

�	
������������
��
���	��������

•� Creation of specialised objects. Object classes are specialised through the defini-
tion of subclasses.

•� Parameterise objects. Define attributes and parameters for the specified objects
that can be used for the application of constraints or other configuration mecha-
nisms.
Object-oriented configuration is a modern approach to variant configuration suit-

able for complex structures in arbitrary product domains. Furthermore this approach
allows for simplified maintenance of established service repositories through clear hi-
erarchical structures.

2.5� Lean Configuration

The “Lean Configuration” [25] approach (developed in the course of the

INTELLECT IST-1999-10375 Project) to variant configuration is object oriented, but

reduces the configuration process to a search problem by eliminating the complex,

64 I. Fikouras and E. Freiter

computationally intensive and error-prone first two steps of object oriented configu-
ration thereby eliminating the need for back-tracking.

The reduction in complexity is realised by the usage of correctly configured, com-
plete compositions as the basis for interactive configuration. As long as the user uses
a pre-configured composition as a template for the new variant the configuration pro-
cess can be transformed into a search problem and, specifically, a search for the next
component to be exchanged. The Configurator supplies the user with lists of compo-
nents that (a) are comparable to the service being exchanged and can be safely used in
place of the component to be removed or (b) are compatible to existing services and
can be safely added to the configuration. This mechanism ensures that the configura-
tion is constantly in a correct state.

3 Distributed Service Repository Approaches

Discovery of a requested service can typically be accomplished in two separate man-
ners:
•� by directly contacting a known address that can supply the client with information

on the available services as is currently implemented by UDDI[12].
•� per broadcast. Broadcasts can be either focused on the local network or use mecha-

nisms like multicast to reach a much larger group of service agents without the
need for predefined addresses; an example for such protocols is Service Location
Protocol (SLP) [13].
A major disadvantage of broadcast solutions is that they can produce enormous

amounts of unnecessary traffic that grows exponentially with the number of hops
(Time To Live, TTL) the broadcast is allowed to traverse (i.e. the number of networks
it is allowed to flood). Furthermore such broadcasts are necessary every time the mo-
bile node changes its environment (i.e. after a handover) or in some cases even every
time a certain service is desired. Small TTLs on the other hand reduce the amount of
signalling traffic generated, but coupled with the discrepancy between the networked
and the physical world [14]; can lead to ineffective service discovery queries. Even
clients and service providers in close physical proximity are not guaranteed to find
each other due to possibly large “virtual” distances separating them in the Internet

[14].

Centralised Service Repositories suffer from scalability issues that are usually ad-

dressed with the help of replication. Replicated repositories are however neither truly

scalable, nor transparent due to the fact that updates occur only periodically. Existing

technologies like UDDI v1 are considered to scale only moderately. The UDDI Repli-

cation and Scalability team is as of the writing of this document considering a distrib-

uted architecture for future revisions of its specification.

A distributed service repository based on a distributed directory like LDAP

(Lightweight Director Access Protocol) can provide both a more scalable and more

efficient solution. In addition to the performance benefits offered by LDAP, work

within the NOMAD project is also progressing on an LDAP based distributed UDDI

repository for providing compatibility with WebService technologies [15]. Within

Project NOMAD an existing Free software UDDI repository (SOAPUDDI) is ex-

tended to support LDAP as a universal distributed backend to service repositories.

Service Discovery and Orchestration for Distributed Service Repositories 65

3.1 Lightweight Directory Access Protocol

In LDAP, directory entries are arranged in a hierarchical tree-like structure called the
Directory Information Tree (DIT). Traditionally [16], this structure reflected the geo-
graphic and/or organisational boundaries. Entries representing countries appeared at
the top of the tree. Below them are entries representing states and national organisa-
tions. Below them might be entries representing organisational units, people, printers,
documents, or anything else. In addition, the tree may also be arranged based upon
Internet domain names. This naming approach is becoming increasing popular as it
allows for directory services to be locating using the Domain Name System (DNS).

An entry is referenced by its distinguished name, which is constructed by taking
the name of the entry itself (called the Relative Distinguished Name or RDN) and
concatenating the names of its ancestor entries. For example, the entry for Ioannis
Fikouras in the Internet naming example above has an RDN of uid=fks and a DN of
uid=fks,ou=PPC,o=BIBA,c=DE".

Data on services stored in an LDAP distributed database can be spread across mul-
tiple LDAP servers. These servers are typically responsible for specific regions of the
LDAP directory tree.

4 NOMAD Composite Services Data Model

This section introduces the NOMAD Composite Services Data Model starting with
the NOMAD Mobility Aware Services Taxonomy and continuing with the various
component and workflow types.

4.1 Mobility Aware Services Taxonomy

The following simple taxonomy is used as the basis for defining different types of
Elementary Services and the relationships between them in the context of mobility
aware Composite Services Configuration. This categorization is achieved mainly
based on the type of functionality the Elementary Services offer. Services can thus
belong to the following groups (see Fig.2):
•� Stationary or Mobile
•� Of limited availability or unlimited availability
•� Information services

The defining attribute of stationary services is their fixed position. Such services
are usable only by users in their immediate vicinity, as opposed to mobile Services
that can change their location. An example for a stationary service would be a service
provided in a physical store i.e. a haircut, a meal, etc., whereas mobile services could
be taxis, couriers, etc that can change their location to meet the user. Mobile services
can be of a logistical nature, but are not restricted to transportation services. In order
to combine multiple stationary services into a composite service, logistics (mobile)
services are required if both stationary services are in different physical locations.
Combinations of multiple mobile services are also possible.

66 I. Fikouras and E. Freiter

������	���

�������������

�	�������

���
���

Fig. 2. NOMAD elementary services

Information Services are considered to be a special type of stationary services as
they lack a number of characteristics thereby posing a smaller amount of requirements
to the configuration process. An example for such a service could be an Internet based
weather report system. This type of facility does not have a physical location, is nev-
ertheless stationary, but does not require a mobile service to get connected to other
services. Ubiquitous connectivity is assumed to be provided by networks. Networking
facilities provided by the NOMAD integrated network platform [27] are assumed to
be always available.

Services with limited availability are services that are provided based on the avail-
ability of finite resources. Such services usually require additional actions in order to
handle reservations, prevent overbooking, etc. An example for such a service would
be any facility that can accommodate a limited amount of customers (i.e. hotel, res-
taurant, etc.) Services that service customers on a FIFO basis and simply serve all in-
coming requests are considered to be services with an unlimited capacity. Both serv-
ices with limited and unlimited capacities can be either stationary or mobile.

����	
���

�����	��������
���

����	
���

�	�������

����
�

����	
���

�������������
���������	�	�

����	
���

������������
���

����
�

����	
���

�����������������

����	
���

���
������������

����

�

����	
���

������������
���������	�	�

���� �

����	
���

��		�����	

����

�

����	
���

�������������
���

����	
���

���
�������
����

� �

� �

�
�

Fig. 3. Composite Services Data Model

4.2 NOMAD Composite Services Component Types

The NOMAD Composite Services Data Model divides services conceptually into two
categories, Elementary Services and Composite Services. Elementary Services repre-
sent a specific instantiation of a service and contain all data needed to describe it.
They inherit a set of general attributes available to all services from the Abstract
Service data-type. Composite Services consist of groups of Composite Service Com-

Service Discovery and Orchestration for Distributed Service Repositories 67

ponents derived individually from Elementary Services. Composite Service Compo-
nents inherit their attributes from Elementary Services, as well as attributes related to
workflow management from the Abstract Service Component datatype. The purpose
of these components is to describe the exact composition of the service, including
data on which components are connected, by what Interfaces and in what order. Con-
nections between such components are described additionally with the help of Con-
nection components (see Fig.6).

���������

��������		

�
�	����	�����������
�
�	����	�	
�������

����	��
�

���	�������	���	

���
��
��

����	�����	����	����	� �����!�"���	����	����#!

	
��������
�������

���������
�	�����
�

����	�����	����	������!�$�����%��	�!

Fig. 4. Elementary Services with two Interfaces

Service Categories descend from the Abstract Category datatype and implement a
means of grouping elementary services into sets according to functional criteria.
These sets are meant to simplify and optimise the composite service configuration
process, by providing predefined groups of components that can be used to reduce the
amount of services the Configurator has to process in his/her search for suitable com-
ponents.

��������		

	
��������
�������

��������		

���������

��
� 	
��������
�������

���������������&	������
��'	
��������
�������

������������&	������
��(
��������
�������

���������������&	������
��)	
��������
�������

&	������
���
���������

���	
	�
��	�

Fig. 5. Elementary Service "socket" (left) with multiple "plugs"(right)´

4.2.1 Composite Services, Interfaces, Connections, and Workflows
Interfaces between components implement constraints and as such offer mechanisms
for determining whether Elementary Services are suitable for integration into a com-
posite service (see Fig.6). The requirements that need to be fulfilled for a successful
composition are derived both from Components connected to the Interface, as well as
from user preferences or Connection components. Interfaces can be defined between
Elementary Services, Composite Services, Service Categories and Service Providers
and are a part of Elementary Services. Interfaces are mainly used to determine
whether two Elementary Services fit, whereas Connection components describe a
specific bond between two Composite Service Components.

68 I. Fikouras and E. Freiter

���������
�������
���������

��������		

����������

)�

	����
�

���������
�������
���������

&	������
�

��*�����	��	����	

+�
��	�&��*,-	��

,.�� 	��

���������

��
�

��� 	�)�*��
	
����������

�
�����
��
����������������

�����������������

�	/0
�*���

�	/0
�*���

1������-��	
+�
��	�&��*,-	��,.�� 	��

���������
�������
���������

2���%��.�� 	��

�	/0
�*���

Fig. 6. Composite Service with Global Workflow Model

The relationship between interfaces and elementary services matched by the filters
contained in an interface resembles the one between plugs and sockets, whereby inter-
faces as sockets match multiple plugs. Henceforth, connections to Elementary Com-
ponents that have a direct reference to an interface via its unique identifier will be re-
ferred as “sockets” and components that are matched by a socket will be referred to as

“plugs”. An interface object is not restricted in its scope to use by only one pair of

Service Components, but rather implements a generic rule (constraint) that can be

used by multiple components for describing their interfaces.

���������
�������
���������

��������		

����������

)�

	����
�

���������
�������
���������

&	������
���

��*�����	��	����	

����+�
��	�&��*34.���34
&	������
�

��� 	�)�*��
	
����������

�
�����
��
����������

�������������������
�����
�

�	/0
�*���

�	/0
�*���

2��5�-��	
+�
��	�&��*34.���34&	������
�

���������
�������
���������

.���

�	/0
�*��

����������

)�

	����
6

����)�*��
	
�������

�
�����
��
������������������
�����������!��������
�����
�

���������

��
���	��
��	�

Fig. 7. Composite Service with Flow Model Workflow

An elementary component can be connected to multiple interfaces and can act as a

plug and or a socket (see Fig.5) depending on whether it is executing a search for a

compatible component (through one of its interfaces) or being the target of such a

search. Provided that multiple interfaces are available, all plugs corresponding to the

filters in the interface objects are possible composition candidates. A positive match

between two components however requires matching interfaces in both directions. In

Service Discovery and Orchestration for Distributed Service Repositories 69

turn, this causes the Configurator to backtrack the connection between the plug and
the socket in order to make sure that the plug also fits the socket.

When modifying existing Composite Services (i.e. when exchanging one Service
Component for another) the Configurator needs to know precisely how components
are connected to each other, to avoid altering the structure of the composition by us-
ing a different interface for connecting the new component with the rest of the com-
position. Connection components are therefore used for storing information on the
connections between composite service and the corresponding interfaces (see Fig.7).

NOMAD Composite Services are assembled as a set of Composite Service Com-
ponents arranged according to a specific type of workflow. Workflow functionality is
introduced based on mechanisms specified by WSFL [26] (WebServices Flow Lan-
guage) in order to ensure WebService compatibility. Composite Services can thus
have one of the following types of workflow: Flow Model, Global Model and Recur-
sive Composition.
•� A Flow Model is a linear workflow where each service has to be executed in a spe-

cific sequence. The correct sequence of execution is stored within the Composite
Service Components.

•� Global Models provide a description of how the composed services interact with
each other. This type of workflow requires no additional considerations.

•� Recursive composition of services provides scalability to the composition language
and support for top-down progressive refinement design as well as for bottom-up
aggregation. Recursive composition of services is made possible by the loosely
couple nature of NOMAD Composite Services. New Composite Services can be
composed out of existing compositions by merging the existing groups of compo-
nents into new bigger compositions.

5 Composite Services Schema and Engine Integration

Current implementations of LDAP offer flexible database integration mechanisms
that make the coupling of a large variety of systems possible through a simple and
well documented interface. Servers like the OpenSource product OpenLDAP [17] are
based on a modular front-end-backend architecture that allows that usage of the
LDAP front-end with arbitrary back-ends. Such back-ends would traditionally be re-
lational or other databases (SQL, BDB, LDBM, etc.), programmable back-ends (i.e.
perl, tcl, etc.) or even other LDAP servers, LDAP proxies and other constructs.
OpenLDAP can be configured to serve multiple back-ends at the same time. This
means that a single OpenLDAP server can respond to requests for many logically dif-
ferent portions of the LDAP tree, using the same or different back-ends for each part
of the DIT.

Middleware for the management and configuration of composite services can be
thus integrated as an additional backend. This backend would be responsible for re-
solving queries regarding Composite Services based on defined constraints. The Con-
figurator itself could also use the LDAP distributed database as a source for data on
elementary services. Such queries would then be referred to the appropriate LDAP-
Node within the DIT. The Configurator itself can also be implemented locally as sup-
porting module for the local Service Discovery node or be installed centrally.

70 I. Fikouras and E. Freiter

s= Bremen, c= DE

o= Hotel XYZ, c= DE o= Taxi XYZ, c= DE

� � � � � � � � � � � � � � � 	
 � � � � �

 � � � � � � 	
 � � � � �
 �

� � � �

� � � � � � � � � �

� � � � � � � � �

�
 � � �

� � � � � �
� � � � � � � �

� � � � � � � � ! " # $

� � � � � � � � ! " # $ � % & ' ()

� � � � � % & ' () � $ * + (% %

,

� � � � � � � � � �

� � � � �
 �
 �

� � � � � % & ' () � $ * + (% % � $ * + % & * & #

s= Bremen, c= DE LDAP Server

- . / 0 1 2 3 4 1 5 6 7 8 9 0 : ; 1 0 Backends

Database

0 1 1 <
0 1 1 < = 7 ; > ? @

A B B C D E A F G H I G J K

A B B C D L M N O P D K G Q R O G L L

Services stored in the Database

Database subset created during
configuration/composite service
search

Non persistent potential composite
services created during the
query process

ou= configurator, o= Hotel XYZ, c= DE

ou= configurator, s= Bremen, c= DE

Fig. 8. Distributed Directory hierarchy with multiple Configurator Engines

A Composite Service Configurator can be configured to receive service discovery
queries directed to the LDAP DIT node they are attached to. This is achieved by des-
ignating the Configurator back-end as responsible for a predetermined branch of the
DIT. The Configurator being one of many possible back-ends of a single LDAP
server can be restricted to a portion of the branch covered by the directory server it-
self. This allows for standards conform access the Configurator via LDAP queries. At
the same time the Configurator has full access to all the LDAP DIT and can itself use
LDAP queries to gather information on additional services, as well as access other
Configurators located in different parts of the distributed directory. Such an arrange-
ment allows for recursive creation of composite services, were a Configurator can
consult any number of other Engines providing some subset of the overall composite
service.
The Configurator handling Composite Services for a Service Repository in the area of
Bremen (see Fig.8) could for instance be set-up as one of the back-ends for a Direc-
tory Server with the distinguished name (DN) s=Bremen, c=DE . Queries related to
elementary services under the aforementioned DN are automatically handled by the
root directory server or forwarded to other associated directory servers handling
smaller branches of the local DIT (i.e. Hotel XYZ, Taxi XYZ, etc.). Queries related to
composite services on the other hand are addressed to a specific branch of the DIT
(ou=configurator, s=Bremen, c=DE) and are forwarded to the Configurator back-end�

5.1 LDAP Composite Services Schema

The domain specific knowledge required for Service Composition is hard-coded into
an LDAP schema [28]. Elementary Service types that are to be part of the composi-
tion process are described in this schema. LDAP schemata are Object Oriented and
consist of definitions of Object Classes defined as a collection of attributes with
clearly defined datatypes. Object Classes may inherit attributes from multiple other
such classes. The Composite Services schema thus defines the attributes describing
the services, as well as the interfaces required for service composition. Component
attributes are statically defined in the LDAP schema of the directory server and have
either a MUST (compulsory) or MAY (optional) status. Individual instantiations of

Service Discovery and Orchestration for Distributed Service Repositories 71

the services may only vary in their choice of attributes, and possibly additional op-
tional attributes not used for composition purposes.

The following code is a simplified representation of an LDAP v3 schema with re-
spective object definition in LDIF [29] format for Composite Service Components,
Composite Services, Interface and Connection components.

�
������������
�

!
��"#$%�&���'���(��������&

)%*(�&(���������*��'����(��������&

+,����������-��'������
������*��'���(��������

$+*.����/"��
���0����������-*��'���)"�1

$#2����������)"�1

������3���4�����35�-6)��'���7

�
������������
������*��'���(��������

�
��������������������-*��'���

�
��������������'���(��������

���������-*��'���)"����3���4�����389$��3.����������7

��/"��
�����

������3:���#�������35�-6)��'���7

�
������������
������*��'���(��������

�
��������������������-*��'���

�
��������������'���(��������

���������-*��'���)"����3����#������3#;<*��3.����������7

���������)"����3#;<*=������������35�-6)��'���7

��/"��
����!

Service Components inherit attributes from the Abstract Service Component and
the Elementary Service, such attributes include the sequence number used for imple-
menting the workflow. Furthermore a Service Component contains a direct connec-
tion to the Elementary Service it represents and its related interfaces.

72 I. Fikouras and E. Freiter

�
������������
�
�
!
��"#$%�&<��������&

)%*(�&<����������
����&

$+*.�����0�������1

$#2��'����
����-�1

������3#;<*=������������35�-6)��'���7

�
��������������������

��������6���
���������3���4��1������������3>�����1
������3�����11

The actual task of defining the relationship between two elementary services is ac-
complished by Interface objects. Interfaces are separate objects that contain LDAP
filters or DNs describing the compatible components, as well as additional attributes
specifically related to the interface and are linked to a specific component via their
Distinguished Name (DN), a unique identifier positioning the object within the LDAP
Directory Information Tree (DIT).

LDAP filters defined in an Interface object effectively represent preconditions that
have to be met in order to achieve a working composition. Valid operators used for
constraint resolution are all the operators supported by the LDAP filter specification
[23] and include basic operations like “equal”, “not equal”, “greater than” and “less

than”. The filters contained in an interface object make use of standardised attributes

defined in the schema for the required type of service. The use of non-standardised

attributes is possible, but may lead to ineffective queries.

�
������������
�
?
!
��"#$%�&����������&

)%*(�&(�������������(���������*��'���&

$+*.�����0����4(���������0�������(���������0����������1
1

������35�-6)��'�=(������������35�-6)��'���7

�
���������������������

���4(������������35�-.��������35�-6)��'���7

������(������������3(��:��������35�-6)��'���7

������������3#;<*=������������35�-6)��'���7

Connection objects describe a specific connection between two Service Compo-

nents. As such these objects contain the unique identifier of the plug and the socket

components involved as well as the interface describing compatible Elementary

Services.

Service Discovery and Orchestration for Distributed Service Repositories 73

6 Conclusions

This paper has shown the need for transparent discovery and orchestration of com-
posite services out of elementary services. Furthermore an approach was illustrated
for Distributed Composite Services Orchestration and Discovery based on Variant
Configuration theory and a Distributed Service Repository. The authors propose the
implementation of a middleware platform capable of addressing the issues identified
and proceed to describe parts of its specification.

Acknowledgements. Project NOMAD (IST-2001-33292) is funded by the European
Commission within the IST Programme of the FP5. The authors wish to express their
gratitude and appreciation to the European Commission and all NOMAD partners for
their strong support and valuable contribution during the various activities presented
in this paper.

References

1.� ITU Internet Reports 2002: Internet for a Mobile Generation, International Telecommuni-
cation Union, September 2002,
http://www.itu.int/osg/spu/publications/sales/mobileinternet/

2. Mobile and internet penetration rates increase 08/08/2002, http://www.europemedia.net/
3. eEurope Benchmarking Report, European Commission,

http://europa.eu.int/information_society/eeurope/benchmarking/index_en.htm
4. eTForecasts, Internet Users Will Surpass 1 Billion in 2005,

http://www.etforecasts.com/pr/pr201.htm
5. Niebert, N, “Convergence of Cellular and Broadband Networks towards Future Wireless

Generations”, In Wireless Strategic Initiative (WSI) Book of Visions 2000 – Visions of

the Wireless World Workshop, Brussels 2000

6. Mohr, W., “Alternative Vorschläge zur Spektrumsnutzung für IMT-2000/UMTS”, Spek-

trumsworkshop ITU-R, October 2000, Geneva, Switzerland

7. Katz, HR, Brewer, AE, “The Case for Wireless Overlay ‘Networks”, In: SPIE Multimedia

and Networking Conference (MMNC’96), January 1996, San Jose, CA, USA

8. Keryer, P. (2000), Presentation at the workshop: Visions of the Wireless World, 12th De-

cember 2000, Brussels

9. Pöyry, P., Repokari, L., Fournogerakis, P., Fikouras, I., “User Requirements for Seamless

and Transparent Service Discovery”, In: Proceedings of eChallenges 2003, 22–24 October

2003, Bologna, Italy, to be published

10. Fikouras, I., Wunram, M., Weber, F., “Seamless Integration of Mobile Products and

Services – User-centricity and Mobility Awareness for mCommerce”, In: Proceedings of

the Wireless World Research Forum (WWRF) Kick-off meeting, Munich 2001

11. Gilder, G., “Telecosm : How Infinite Bandwidth Will Revolutionize Our World”, Free

Press, September 11, 2000

12. Universal Description, Discovery and Integration of WebServices (UDDI),

http://www.uddi.org/

13. Guttman, E., Perkins C., Veizades J. and Day M., “Service Location Protocol, Version 2”,

RFC 2608, June 1999

74 I. Fikouras and E. Freiter

14. Ioannis Fikouras, "Peer-to-peer Service Engineering for Integrated Networks", In: Wire-
less Technology 2002 Business Briefing, World Markets Research Centre, London, UK,
Pages 88–91

15. B. Bergeson, K. Boogert, “LDAP Schema for UDDI” draft-bergeson-uddi-ldap-schema-

01.txt, May 2002

16. RFC2253 "Lightweight Directory Access Protocol (v3): UTF-8 String Representation of

Distinguished Names.

17. http://www.OpenLDAP.net
18. ����������������������������
������������������������
����������
��� ���������� � !��"� #

#$$%
#$� Neumann B. (1988) Configuration expert systems: a case study and tutorial. Proc. Conf.

on AI in manufacturing, Assembly, and Robotics, Oldenbourg

20. Lunze, J. Künstliche Intelligenz für Ingenieure. München, Wien: Oldenburg Verl. 1994
21. ���������&�����'
������
���
��(
���������)������
��
���*
�����
�&������+
��
������)��

,���
��#$$%
--� .���/���0������&�

��������
�������
��,

�
����)��������!�,)$$"��&�����1��2��'3 &�����

&�������4����#$$$��		��5556578
23. Howes, T., “The String Representation of LDAP Search Filters” RFC 2254, December

1997
-8� Cunis R., Günter A., Strecker H. (1991) Begriffshierarchie-orientierte Kontrolle. In Das

PLACON-Buch. Informatik Fachberichte Nr. 266. Springer, Berlin, Heidelberg

25. Fikouras, I., Detken, K., Lean Configuration: Interactive 3D Configuration for E-

Commerce Environments, In: J. Gasos, K-D. Thoben (Eds.), "E-Business Applications:

Technologies for Tomorrow's Solutions", Springer, Berlin, 2002

26. Prof. Dr. Frank Leymann, WebServices Flow Language (WSFL 1.0), May 2001,

www.ibm.com/software/solutions/ webservices

27. Koojana Kuladinithi, Andreas Könsgen, Stefan Aust, Nikolaus Fikouras,

Carmelita Görg Ioannis Fikouras, "Mobility Management for an Integrated Network Plat-

form", 4th IEEE Conference on Mobile and Wireless Communications Networks, Stock-

holm September 2002

28. M. Wahl, T. Howes, S. Kille, “Lightweight Directory Access Protocol (v3)” RFC2251-

2256, 2829–2831, December 1997

29. G. Good, “The LDAP Data Interchange Format (LDIF) - Technical Specification”

RFC2849, June 2000

30. Bense, H; Bodrow, W. Wissensbasierte Dialogführung für ein Beratungssystem zum

Softwarequalitätsmanagement. In Objektorientierte und regelbasierte Wissensverarbei-

tung. Heidelberg, Berlin, Oxford: Spektrum, Akad. Verl., 1995

31. Cunis, R; Günter, A; Strecker, H. Fallbasiertes Konstruieren mit Bibliothekslösungen. In

Das PLACON-Buch. Springer, Informatik Fachberichte Nr. 266 1991

32. Günter, A; Dörner, H; Gläser, H; Neumann, B; Posthoff, C; Sebastian, H-J. Das Projekt

PROCON: Problemspezifische Werkzeuge für die wissensbasierte Konfigurierung. Tech-

nische Uni Chemnitz, Martin-Luther Uni Halle-Wittenberg, Uni Hamburg, Technische

Hochschule Leipzig, Technische Hochschule Zwickau. PROCON-Bericht Nr.1, 1991

33. Alex Toussaint, BEA Systems, Java Specification Requests, Java Rule Engine API ,

http://www.jcp.org/en/jsr/detail?id=94

34. Limthanmaphon, B. and Zhang, Y. (2003). Web Service Composition with Case-Based

Reasoning. In Proc. Fourteenth Australasian Database Conference (ADC2003), Adelaide,

Australia. Conferences in Research and Practice in Information Technology, 17. Schewe,

K.-D. and Zhou, X., Eds., ACS. 201–208.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

