
Reflective Architectures for Adaptive
Information Systems

Andrea Maurino, Stefano Modafferi, and Barbara Pernici

Politecnico di Milano,
Dipartimento di Elettronica e Informazione,

Piazza Leonardo da Vinci, 20133 Milano, Italy
{maurino, modafferi, pernici}@elet.polimi.it

Abstract. Nowadays the anytime/anywhere/anyone paradigm is
becoming very important and new applications are being developed
in many contexts. The possibility of using applications along a wide
range of devices, networks, and protocols raises new problems related
to delivery of services. Current academic and industrial solutions try to
adapt services to the specific distribution channel, mainly by changing
the presentation of the service. In this paper, we reverse this perspective
by using adaptive strategies to try to adapt the delivery channel to
services as well. We present a possible architecture and focus our
attention on the use of reflective components in the adaptive process.
Using the reflection principle, we are able to evaluate the channel
constraints and the conditions in which the distribution channel is
working at a specific time. This information, built with service, user,
and context constraints, is used as input to adaptive strategies to
change the current channel characteristics, to new ones satisfying all
the requirements. If this kind of adaptation is not possible, we consider
the different QoS levels offered by the service and the user’s readiness
to accept a downgraded service provisioning.

Keywords: Adaptive information system, reflective architecture

1 Introduction

In the last years, the design and development of information systems have sig-
nificantly changed due to new network architectures and devices, which increase
the number of distribution channels available for delivering of information or
services. In the anytime/anywhere/anyone paradigm [18], a novel generation of
applications [9] modify themselves according to the change of context, or to spe-
cific application constraints; for example, adaptive hypermedia applications [5,1,
20] modify data presentation according to the specific client browser capability.
The goal of this paper is to present an architecture of a reflective adaptive system
and adaptation strategies at different levels. First, we consider the possibility of
modifying the distribution channel by means of adaptive information systems
based on reflective architectures. The principle of reflection [10] is mainly stud-
ied in the programming language community and it consists in the possibility of

M.E. Orlowska et al. (Eds.): ICSOC 2003, LNCS 2910, pp. 115–131, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

116 A. Maurino, S. Modafferi, and B. Pernici

system inspecting and adapting itself by using appropriate metadata. In [6,12],
the use of reflective architectures has been proposed as a new design principle
of middleware, but the adaptivity is in charge of applications only; other papers
[16,7] have considered the use of non-reflective adaptive channels, but they con-
sider only the network as channel. Clearly adaptive distribution channels may
be also used with adaptive applications to create a novel generation of multi-
channel adaptive information systems. The middleware architecture we present
allows overcoming existing limitations of information systems by means of mod-
ification of controllable components of distribution channels, identified through
their description, and according to the specific context and level of Quality of
Service (QoS) requested by users. The distribution channel delivers e-Services
in order to satisfy a given QoS. If the user-specified quality level cannot be sat-
isfied then our strategies try to adapt the distribution channel to a reduced QoS
level still acceptable for the user. If the downgrading of QoS levels is still not
sufficient, then other alternatives to provide the service are considered according
to the users and service constraints.

The paper is organized as follows: in Section 2, we present the requirements of
a reference example used to show, throughout the paper, how our architecture is
able to adapt the distribution channel to deliver e-Services; Section 3 shows the
distribution channel model representing metadata used by the reflective archi-
tecture. In Section 4, we present the general architecture and then we describe
adaptive strategies in Section 5. Section 6 explains the adaptations functions
used in our strategies. Finally, Section 7 discusses the state of art of adaptive
information systems.

2 Reference Example

The reference example taken from the banking information system domain is
based on a service that “allow users, through Internet, to see in real time in-
terviews with financial analysts”. This activity requires the delivery of real time
videos along Internet, with some mandatory minimum requirements: the user
device must be audio enabled and due to the real time nature of the service
the channel bandwidth is also relevant. The information system has to negotiate
with the user a reasonable minimum channel bandwidth that s/he accepts to see
the video in an acceptable mode from her/his point of view.

3 Distribution Channel Model

The distribution channel model adopted in this paper defines the metadata
needed for adaptation functionalities. Developing our first proposal in [13], we
specify this information at three different levels of abstraction. The conceptual
level specifies the general characteristics of service distribution; at logical level,
we characterize such general characteristics; at technological level, technical tun-
ing parameters are specified.

Reflective Architectures for Adaptive Information Systems 117

At each level, characteristics may be either observable or controllable, or
both, yielding different levels of possible adaptation. In the following, we illus-
trate the three levels in detail.

3.1 Conceptual Model

We consider a conceptual distribution channel as an access point to a specific set
of information or execution services. This level corresponds to channel definitions
as they are viewed from the commercial point of view. For instance, a service
can be provided via web, via a call center, or using short messages. In the
description of distribution channels at conceptual level, a service can be viewed
as a functionality with a set of constraints. If requirements for invoking the
service on each channel on which it is provided, and for providing the results
of the service itself, are given, the service is well described for the distribution
channel.

At this level a distribution channel is defined as:

– Set of services: each distribution channel supplies a specific set of services
– Technological features: each distribution channel has specific technologi-

cal features characterizing the definition of channel.

Reference example. Within a banking information system, we consider the
Internet banking channel as the one requiring that customers interact with the
Bank information system by means of an Internet connection. Customers access
the Bank application (typically a web site) through a login/password mecha-
nism. After the authentication phase, they may carry out services according to
their personal profile. The technological constraints in this case require that the
provider provides the service through a web server, a http connection, and a
video-player plugged in the browser on the client side.

3.2 Logical Model

From the logical point of view, we characterize a distribution channel as com-
posed of (see Fig.1):

– The user device of application users,
– The network interface through which the device is connected to the network,
– The network used to transfer information,
– The application protocols used by e-Services.

Each element composing the distribution channel is characterized by a num-
ber of attributes (e.g., device screen resolution or network topology). Each at-
tribute is associated with a value, which can be numeric, as for example in the
case of the device weight, or a set of numbers, or a mathematical function, e.g.,
the graph function describing the network topology. The service delivery is af-
fected by user requirements. To specify them, we introduce the concept of rating

118 A. Maurino, S. Modafferi, and B. Pernici

Channel

Application ProtocolNetworkNetwork InterfaceDevice

1..N

* * * *

Fig. 1. UML specification of logical distribution channel components

class, which associates qualitative values (e.g., “fast” or “slow”) to attributes in
a given application domain. Rating classes are defined thanks to a measurement
scale applied on measurable attributes. The scale has to be at least ordinal,
but it can be also interval, ratio or absolute [15]. The rating classes are used
to describe QoS levels offered by a given e-Service. An example of QoS levels
is shown in Fig.2, where the quality dimension “speed” is associated with three
different quality level: “very high”, “high”, and “medium”. For each quality level
a minimum value is defined.

<QualityLevels ServiceID="S1">
<Dimension name="speed">

<Level name="very high">
<LogicalAttribute name="Bandwidth">

<Condition type="greaterThan" unit="Kbps">512</Condition>
</LogicalAttribute>

</Level>
</Dimension>
<Dimension name="speed">

<Level name="high">
<LogicalAttribute name="Bandwidth">

<Condition type="greaterThan" unit="Kbps">150</Condition>
</LogicalAttribute>

</Level>
</Dimension>
<Dimension name="speed">

<Level name="medium">
<LogicalAttribute name="Bandwidth">

<Condition type="greaterThan" unit="Kbps">128</Condition>
</LogicalAttribute>

</Level>
</Dimension>
...

</QualityLevels>

Fig. 2. Example of QoS levels

Reference example. According to the business requirements of the banking
information system, we define the domain specific relevant attributes for all the
four components previously defined.

Reflective Architectures for Adaptive Information Systems 119

Table 1. The 5 tuples of Internet banking channel used in the examples

The first element describing a distribution channel is the device on which
the end-user interacts. Within the financial application domain, we consider as
relevant attributes for this component: the screen resolution and the number
of colors, which are relevant when the information system wants to send users
graphical information. Other key attributes are the audio support describing the
presence or absence of audio cards inside the device and the input device used by
customers; this attribute is relevant in the definition of the best interaction meth-
ods. The second component is the network interface representing the connection
between devices and transmission media. It is worth noting that a device can
access different networks by means of different interfaces; for example, a PC can
access the Internet via LAN through a network card or via PSTN by means of
an analogical modem. In the financial context, we consider that the only relevant
attribute is the Transfer rate achievable by the specific interface.

The next component describing a distribution channel is the network. It
includes all physical structures, hardware components and protocols defining a
network infrastructure. In this component, we include all protocols covering the
first four levels of the ISO/OSI protocol stack. Within the bank information
system, we identify as relevant attributes for the network the transfer rate and
the security level that it offers.

We also consider as a distribution channel component the set of application
protocols allowing users to interact with the information system. We identify two
interesting attributes: the security support and the standardization of the appli-
cation protocol, which is an important feature for reusing existing application
parts.

3.3 Technological Model

From a technological point of view a distribution channel is defined by a tuple of
specific instances of device, network interface, networks and application proto-
cols. If a value does not exist we assume that it is null. At technological level, it

120 A. Maurino, S. Modafferi, and B. Pernici

is possible to define attributes as observable (e.g. device position), if a software
layer allows only showing their values to the information system; or controllable
(e.g. bandwidth or screen resolution), if it is also possible to modify them. It is
worth noting that a logical model can be instantiated with several tuples having
at least one common attribute value. For example the logical distribution chan-
nel Internet (described in Section 3.2) is composed of a set of tuples each one
characterized by the use of the HTTP as application protocol.

Reference example. An example of the technological model applied to Inter-
net banking channel is shown in Table.1, where for each attribute and for each
tuple, we indicate if it is observable (O) or controllable (C).

4 General Architecture

Fig.3 shows the general architecture and its relationships with clients and ser-
vices. Three are the layers composing our architecture; they are:

E-Service composition platform

N-UPLES

Reflective platform

SERVICE CLIENT

CHANNEL
MONITOR

CHANNEL
MANAGER

USER
CONTEXT

MGR.

CHANNEL ADAPTER

CONTEXT MANAGER
(GLOBAL PROFILE)

HARMONIZE

VALIDATE

ADAPT

COMPOSITION

INVOCATION

SERVICE
CONTEXT

MGR.

LOCAL
CLIENT

PROFILE

Interaction enabling platform

E-Service
description

Rating
class

TRANSLATOR

QoS
NEGOTIATOR

TECHNOLOGICAL
MERGER

TRANSLATOR

LOGICAL
CHANNEL
MANAGER

CHANNEL
DESCR.

MERGING
RULES

REDUCE_
LEVEL

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(7)

(7)

(8)
(8)

(8)

(8)

(8)

(8) (8)

(8)(9)

(10)

LOCAL
SERVICE
PROFILE

(8)

(12)

(11)

Fig. 3. General architecture

– e-Service composition platform, which is in charge of receiving the client
request, selecting e-Service(s) satisfying it, and invoking the selected e-
Service(s).

– Interaction enabling platform, which is the core of our architecture, because
it is in charge of collecting constraints from e-Services, clients and context,

Reflective Architectures for Adaptive Information Systems 121

determining the QoS for each e-Service according to the client profile and
selecting the best channel where the e-Service can be delivered.

– Reflective platform, which is in charge of adapting the selected distribution
channel according to the constraints obtained from the Interaction enabling
platform and monitoring if the distribution channel along which an e-Service
is delivering respects the QoS level chosen by user.

Our architecture interacts with the client, which can be a user or a software
agent, and with the e-Service. It is worth noting that the general architecture is
decentralized so it is possible that all components of each layer are distributed
over a number of hosts.

4.1 Constraints

In this paragraph we introduce the concept of technological constraints. They
are given by service and user, through local and global profiles, and by context,
and they are collected by Technological merger (see Fig.3), which sends them,
opportunely integrated, to the Reflective platform.

Let Tc be the set of Technological Constraints associated with a tuple.
Because there exist different QoS levels that user might accept, there will

exist a set of Tc for each tuple. We indicate with ∆T this set of Tc.
Each element T j

ci
is defined as

T j
ci

= 〈vmini , vmaxi , attribute, component〉

where:

– the index i represents the tuple and the index j the instance of ∆T we are
considering;

– vmin and vmax are the minimum and the maximum of a mathematic function
(i.e. the media or the peak or simply the identity function) calculated for
each distribution channel attribute value;

– attribute and component are respectively the attribute and the component
where the constraint is defined.

4.2 E-service Composition Platform

The first layer of our architecture is in charge of receiving the client requests,
defining the appropriate (set of) e-Service(s) satisfying them. The goal is ob-
tained by analyzing the static description of the requested e-Services and the
functional and non-functional requirements of the client as described in [3]. The
e-Service composition platform selects the best e-Service, and requests the In-
teraction enabling platform to find the best distribution channel. When the
distribution channel is selected, the e-Service composition platform invokes the
execution of the e-Service.

122 A. Maurino, S. Modafferi, and B. Pernici

Reference example. Let us assume that a user requests the video streaming
service about an interview of financial analysts. He sends his request (through arc
(1) of Fig.3) to the Composition module, which queries the e-Service description
repository and gets the description of e-Service S1 only (arcs (2) and (3) of
Fig.3). The Composition module calls the Invocation module which passes to
the Logical channel manager, in the Interaction Enabling Platform, the request
of enabling the delivery of e-Service S1 (arc (5)).

4.3 Interaction Enabling Platform

The Interaction enabling platform collects all requirements from the client, the
e-Service and the distribution channel in order to manage service delivery on a
given distribution channel. The Logical channel manager module, according to
the description of the e-Service received from the Invocation module, selects a
technological distribution channel (that is, a given tuple). The QoS negotiator,
invoked by the Logical channel manager (arc (6)), requests the sub-set of the
local client profile involved in the definition of QoS levels related to the given
e-Service. This information can be stored directly in the user device or in other
hosts if the device has a very small amount of memory. The QoS levels acceptable
for the end users are chosen among the ones available for the e-Service stored in
the Rating class repository of Fig.3 (arc (7)). These different levels allow a flexi-
ble QoS managing policy, by modeling different satisfaction degrees for the client.
The Technological merger module receives inputs (arc (8) of Fig.3) from the QoS
negotiator, and non negotiable constraints from both client and service profiles.
We identify two kinds of constraints: logical and technological. The former are
related to logical features which do not refer to measurable attributes and they
have to be translated into constraints on technological attributes. An example
of logical attribute is the device graphical capability, which is the result of both
screen resolution and number of colors of a given device at technological level.
Technological constraints are related to technological attributes as described in
Section 4.1. Logical constraints, coming from both user and service profile, are
first translated into technological ones (by using appropriate Translator mod-
ules, which are different for both client and service). The Technological merger
integrates all constraints by using the Merging rules repository and passes down
to the Reflective platform the result of its elaboration and QoS levels expressed
as sets of technological constraints, requesting to satisfy them.

Reference example. Continuing the example, the Logical channel manager
invokes the QoS negotiator by passing the description of e-Service S1. This
component finds in the Rating class repository the QoS levels shown in Fig.2.

In the example of Fig.2 the e-Service S1 is offered at several different QoS
levels about the channel speed (“Very high”, “high”, “medium”, etc.). The client
(through his local profile) selects his best and worst acceptable level by defining
a sorted sub set of QoS. They are then translated into technological constraints
before passing them to the Technological merger. The translation considers that

Reflective Architectures for Adaptive Information Systems 123

channel bandwidth depends on both the transfer rate of the Network interface
and the Network. The Technological merger receives also another technological
constraint specified by the e-Service S1 requiring that the client device must
have the audio card turned on to allow user to listen to the interview. This
requirement is mandatory in order to deliver the e-Service; consequently it has
not been included in the definition of the QoS level.

Let n3, described in Table 1, be the tuple chosen by the Logical channel
manager. Let be






〈0, 128kb/s〉 for Transfer rate of Interface
〈0, 10Mb/s〉 for Transfer rate of Network
〈Off, On〉 for Audio of Device

the range of values in which the distribution channel we are considering can
work.

The Technological merger module generates the following constraints:





level 0

{ 〈150kb/s, ∗, Transfer rate, Interface〉
〈150kb/s, ∗, Transfer rate, Network〉
〈On, On, Audio, Device〉

level 1

{ 〈128kb/s, ∗, Transfer rate, Interface〉
〈128kb/s, ∗, Transfer rate, Network〉
〈On, On, Audio, Device〉

where ∗ means that a maximum value is not given.
This output represents the two acceptable technological QoS levels for the

user. The chosen tuple and the set of technological QoS levels, that is the set of
technological constraints, are sent to the Reflective platform.

4.4 Reflective Platform

The central element of the Reflective platform is constituted by metadata, that
is, the description of distribution channels built by using the model shown in Sec-
tion 3 and stored in the Channel description repository. The availability of this
characterization allows the platform to evaluate if constraints can be satisfied.

The Channel monitor module is in charge of measuring the current values
of the attributes describing the selected distribution channel. Its information is
used by the Channel adapter module, which first evaluates if all constraints can
be satisfied for the tuple chosen by the upper layer from a hypothetical point
of view; that happens if the current working point of tuple satisfies constraints
or if it is possible to modify the distribution channel attributes values accord-
ing to constraints. If there is the theoretical possibility of adaptation, then the
Channel manager module realizes the modification of the distribution channel
by invoking the appropriate software components. If one or more attributes can-
not be modified, for example because the network manager does not accept the
request of additional bandwidth, the Reflective platform reduces QoS levels and
tries to modify the current tuple according to the new values. The reduction of
QoS levels is executed also if there are no acceptable hypothetical solutions. If

124 A. Maurino, S. Modafferi, and B. Pernici

the Reflective platform does not satisfy the client request at least at the lower
level of the QoS assigned, then it advises the Logical channel manager mod-
ule (arc 11 in Fig.3), which will select another tuple according to the e-Service
description. The Reflective platform has also the goal of monitoring and, if nec-
essary, adapting tuples along which e-Services are delivering services. Finally
the Service context manager and the User context manager modules measure
the behavior of e-Services and users to build their global profiles (realized by
the Context manager module).

5 Adaptive Strategies

We consider that the adaptation of distribution channels to services means to
find and, in case, modify, if it exits, a tuple satisfying all constraints.

Let a working point (Wp) be the set of all attribute values carried out by
Channel Monitor in a given instant for the given tuple.

Service

Channel

Dev
1

Net
Int
1

Net
1

App
Prot

1

Dev
1

Net
Int
2

Net
1

App
Prot

1

Dev
2

Net
Int
2

Net
1

App
Prot

1

Dev
3

Net
Int
3

Net
2

App
Prot

1

Dev
4

Net
Int
3

Net
2

App
Prot

1

Technological
Adaptivity

Lo
gic

al
Ad

ap
tiv

ity

Fig. 4. Channel adaptivity

YES

NO

YES

YES

YES

Wp=Get_current_n-uple_values

Validate(Wp)

NO

Wp* = Adapt(Wp)

Validate(Wp*)

Reduce_Level()

Exist another
level in

Exist
 another
n-uple

Consider another n-uple
(Logical adaptivity)

NO

YES

Supply service
is possible

Service cannot
be supplied

Move Wp
to Wp*

NO

NO

Fig. 5. Adaptive flow-chart

Fig.4 shows the two strategies of adaptivity we consider; logical and techno-
logical, which are developed in sequence, in particular:

– The “Technological Adaptivity” represents the tuning phase on the single
tuple, i.e. the attempt to change some attributes of the given tuple to satisfy
constraints, and it is realized by the Reflective platform

– The “Logical Adaptivity” represents the possibility of using a different tuple
of the same logical distribution channel, it is realized by the Interactive
enabling platform.

Fig.5 shows the flow-chart of adaptive strategies mainly realized by the Channel
adapter module, while the concrete movement of working point is realized by the

Reflective Architectures for Adaptive Information Systems 125

Channel manager and the selection of alternative tuples is in charge of the Inter-
action enabling platform. Hereafter we consider the “Technological Adaptivity”
only.

The V alidate() function evaluates if the current tuple working point satisfies
the conditions required by constraints. In this case the service is supplied along
the current tuple, otherwise the Adapt() function (see Section 6.2) proposes
an acceptable working point available for such tuple (Wp∗). The new point is,
then, evaluated again by the V alidate() function. If it satisfies constraints then
the Channel manager module tries to change the current working point of the
selected tuple. If it is impossible to move the current tuple working point, due to
technical limitations or because Wp∗ does not satisfy the constraints, then the
Channel adapter, by means of the Reduce level() function, tries to progressively
reduce QoS levels, according to the service and user requests, looking for an
existing QoS level satisfying them. After each invocation of the Reduce level()
function, the Adapt() function is invoked.

If technological adaptation fails, the information system, within the Inter-
action enabling platform, selects another tuple, QoS levels and constraints, and
the technological adaptive strategy starts again.

This iterative process ends when a tuple satisfying all constraints is found or
when no tuple can deliver the service. In this case the Logical channel manager
tries to use multichannel delivery strategies selecting an alternative delivery
channel, if possible, for the given e-Service.

6 Adaptive Functions

As shown before, adaptive strategies are executed in two phases: theoretical and
practical. For the theoretical study the Channel adapter module has to know
the channel structure. It obtains this information from the Channel description
repository. It is worth noting that the designer has to write some functions
defining the relationship between two or more technological constraints of a
specific tuple to express them in a compatible way. These functions are named
Harmonize Functions as shown in Fig.3.

Following the direction of most recent literature [2], to adapt means looking
for an admissible solution minimizing the distance between service directive and
channel availability to maximizing the QoS. It is clear that this concept of QoS
is dynamic [17,14,19], because channel conditions vary both in time and space.

The Adapt() function realizes such algorithm, while the V alidate() func-
tion detects if the working point, current or proposed by the Adapt() function,
satisfies the constraints. In the next sections we explain more in depth these
functions.

6.1 Validate Function

The V alidate() function evaluates if current attribute values, that is, the current
working point, (Wp), satisfy all constraints. Formally

126 A. Maurino, S. Modafferi, and B. Pernici

V alidate() : {A} → {[0, 1] ∈ N}
where A = 〈Ao ∪ Ac〉 is the set of attributes composed by the union of

observable (Ao) and controllable attributes (Ac) of a given tuple. The result of
V alidate function is 1 if Wp satisfies all constraints, it is 0 otherwise.

Let CA the hypercube formed by the union of theoretical available work-
ing points included between all vmin and all vmax carried out from Interaction
enabling platform and let CC the hypercube formed by all theoretical working
points of a given tuple; it results that acceptable solutions are those included in
the intersection of CA and CC .

Each edge hypercube CCi
(resp. CAi

) of CC (resp. CA) associated with the
generic attribute (i) is defined as follows:






[vimin
; ∞[if constraints are like 〈vimin

, ∗, i, component〉
[vimin ; vimax] if constraints are like 〈vimin , vimax , i, component〉
[0; vimax

] if constraints are like 〈∗, vimax
, i, component〉

[0;∞] if there are no associated constraints

It is worth noting that an attribute domain can be discrete rather than contin-
uous and all Wp are included in CC .

The V alidate() function is defined as follows:

V alidate(Wp) |CA,CC
=

{
1 if Wp ∈ (CC ∩ CA)
0 otherwise

A hypercube can have an infinite extension along variables associated with con-
straints where vimax is not defined. Moreover if an attribute allows only a value,
the hypercube loses one dimension.

According to the flow-chart of Fig.5 the V alidate() function is also invoked
each time a new Wp is proposed by the Adapt() function as shown in next
Section.

6.2 Adapt Function

The Adapt() function is used to move the current channel working point to CA

hypercube, that is, to a new one respecting the constraints requested from e-
Service and user. Thus it receives as input a working point (Wp) and return as
output another working point (Wp∗).

Notice that Adapt() function does not change the working point, it only
detects if there exists a hypothetical point in the solution space where all con-
straints are satisfied. The result of function is:

Wp∗ = Adapt(Wp) |(CA,CC)= argmin(‖ Wp; CA ‖)

The Adapt() function looks for a point in CC having the minimum distance from
CA.

Fig.6 shows a graphical representation of the Adapt() function by considering
only two continuous attributes. There exists an overlapping area between the two

Reflective Architectures for Adaptive Information Systems 127

Fig. 6. Adapt() function behavior
when there exists a no-empty intersec-
tion

Fig. 7. Adapt() function behavior
when there exists an empty intersection

areas CA and CC ; consequently the Adapt() function will define a Wp∗ as shown.
Conversely, Fig.7 shows the case in which there exists an empty intersection
between the two constraint sets. In this case the Adapt() function returns a
new Wp∗ point, that is the best working point available for the current tuple,
however, using V alidate() functions the Channel adapter module will notice
that Wp∗ does not satisfy constraints and thus it will try to relax one or more
constraints (that is to widen CA) by using the Reduce Level() function described
in Section 6.3.

Reference example. Considering that the current tuples is n3, let CA be:

CA =

{ 〈150kb/s, ∞〉 for Network
〈150kb/s, ∞〉 for Interface Network
〈On, On〉 for Audio

where values are related to the best QoS level chosen by user.
Let CC be the following:

CCn3 =

{ 〈0kb/s, 128kb/s〉 for Network
〈0kb/s, 128kb/s〉 for Interface Network
〈Off, On〉 for Audio

Let we suppose that the current working point is:

128 A. Maurino, S. Modafferi, and B. Pernici

Wp =

{
64 kb/s for Network
64 kb/s for Interface Network
On for Audio

Calculating the V alidate() function on these values we obtain

V alidate(Wp) |CA,CC
= 0

Then the Channel adapter module tries to adapt distribution channel by calcu-
lating the Adapt() function:

Wp∗ = Adapt(Wp) =

{
128 kb/s for Network
128 kb/s for Interface Network
On for Audio

but the output of V alidate() is still the same

V alidate(Wp∗) |CA,CC
= 0

6.3 Reduce level Function

Let ∆T be the ordered set of QoS levels acceptable for a given tuple by service
and user, generated by the Interaction enabling platform. Each QoS level is
composed by a set of constraints Tc (Section 4.1), that is different levels may
have different Tc. The Reduce level() function tries to downgrade the CA of
one level. This operation is strongly related to the tuple the Channel adapter
module is considering; so the function tries to relax attribute constraints that
are still not respected looking for closest downgrading level allowed for the tuple.
Formally:

Reduce level() : {CA} → {CA}

In particular

Cnew
A = Reduce level(CA) |∆T

It is hopefully that this new CA is formed by satisfable constraints for the
channel characteristic. The reduction process is progressive and it ends if no
other level is available or if an acceptable one exists.

Reference example. By continuing the reference example the Channel adapter
module controls if it is possible to provide a downgraded service. For this goal
it uses the Reduce level() function.

Cnew
A = Reduce level(CA) |∆T =

{ 〈128Kb/s, ∞〉
〈128Kb/s, ∞〉
〈On, On〉

Reflective Architectures for Adaptive Information Systems 129

Consequently, by remembering that

Wp∗ =

{
128 kb/s for Network
128 kb/s for Interface Network
On for Audio

we obtain V alidate(Wp∗) |CA,CC
= 1

because (CC ∩ CA 	= ø) ∧ (Wp∗ ∈ CC ∩ CA)

That is, the current working point is now acceptable and it is the same of
the lower bound asked after relaxation. We suppose that all the modification of
attribute values are executed without failures; the e-Service provisioning can now
start (arc (12) in Fig.3) and it will be monitored by Channel monitor module in
order to respect the requested constraints during all the provisioning period.

7 Related Work

The field of adaptive information systems is new and relatively unexplored. The
use of reflective architecture for mobile middleware is discussed in [12,4]; other
work [6] use the reflection principle to support the dynamic adaptation of appli-
cations. However, none of these papers mention the possibility to assign the task
of adaptation to the distribution channel instead of application; in our opinion,
our approach simplifies the design and implementation of e-Services because
they do not have to realize adaptive behaviors.
The concept of dynamic service provisioning and dynamic QoS [19,14] involves
both channel and application issues; moreover the new wireless networks and
devices increase the complexity of solutions. Different approaches are being de-
veloped; in [7,16] the possibility of adapting the network by maximizing the
network efficiency looking at its intrinsic parameters is investigated. In the same
direction other systems [2] try to consider features regarding users, but their
channel idea is simply the network and their adaptation process consider a sim-
ple user-profile containing information about user preferences and past behavior.
Other approaches [1,20] try to adapt applications to the distribution channel;
they consider the channel as an only-observable system and try to adapt the
application to it; some systems put their attention above all on the presentation
of the information delivering on a channel; important examples of this approach
are defined in the field of adaptive hypermedia [8,5].

The enriched definition of distribution channel [13] distinguishes our ap-
proach from others, because we consider a distribution channel as a tuple of
four different components and the network is only one of them, thus our ap-
proach is at a higher level of abstraction. Moreover our strategies try to adapt
the distribution channel before trying adaptive application strategy to supply at
least a downgraded service.

130 A. Maurino, S. Modafferi, and B. Pernici

8 Conclusion

In this paper we presented adaptive information systems to deliver e-Services
by means of reflective architectures. The use of reflection principle, obtained by
using a high level description of distribution channels, allow us to define adap-
tive strategies to modify the distribution channel itself (viewed as a tuple of
four different components) to e-Services. Two levels of adaptability are consid-
ered: logical and technological. The former, realized in the Interaction enabling
platform, selects the tuple where the e-Service has to be delivered. The latter
strategy tries to modify the controllable attributes of current tuple to satisfy
constraints. If it is impossible to adapt the selected tuple, then the Interaction
enabling platform selects an alternative tuple. This is the first proposal to de-
sign a new generation of multichannel adaptive information systems. We are now
studying more efficient logical adaptive strategies in the selection of the tuple
where to deliver the service, and how to assign each architectural components
in a distributed information system; we are also evaluating how a service can
select another logical distribution channel. Another problem we are studying is
channel monitoring in mobile systems and adaptive networks.

Acknowledgments. This work has been developed within the Italian MURST-
FIRB Project MAIS (Multi-channel Adaptive Information Systems) [11].

References

1. G. Ammendola, A. Andreadis, and G. Giambene, A software architecture for the
provision of mobile information services, Softcom, International Conference on
Software, Telecommunications and Computer Networks (Dubrovnik (Croatia) and
Ancona, Venice (Italy)), October 2002.

2. G. Araniti, P. De Meo, A. Iera, and D. Ursino, Adaptively control the QoS of
multimedia wireless applications through “user profiling” techniques, IEEE Journal
On Selected Areas in Communications (JSAC) (2003), Forthcoming.

3. L. Baresi, D. Bianchini, V. De Antonellis, M.G. Fugini, B. Pernici, and P. Ple-
bani, Context-aware composition of e-services, In Proc. of VLDB Workshop on
Technologies for E-Services (TES’03) (Berlin, Germany), 2003.

4. G. Blair, A. Andersen, L. Blair, G. Coulson, and D. Gancedo, Supporting dynamic
QoS management functions in a reflective middleware platform, IEEE Proceedings
– Software, 2000.

5. P. Brusilovky, Adaptive hypermedia, User Modeling and User Adapted Interaction
11 (2001), no. 1–2, 87–100.

6. L. Capra, W. Emmerich, and C. Mascolo, Reflective middleware solutions for
context-aware applications, Lecture Notes in Computer Science 2192 (2001).

7. A. Hac and A. Armstrong, Resource allocation scheme for QoS provisioning in mi-
crocellular networks carrying multimedia traffic, International Journal of Network
Management 11 (2001), no. 5, 277–307.

8. A. Kobsa, J. Koenemann, and W. Pohl, Personalized hypermedia presentation tech-
niques for improving online customer relationships, The Knowledge Engineering
Review 16 (2001), no. 2, 111–155.

Reflective Architectures for Adaptive Information Systems 131

9. J. Krogstie, Requirement engineering for mobile information systems, Proc. of
International Workshop on Requirements Engineering: Foundation for Software
Quality (Interlaken, Switzerland), 2001.

10. P. Maes, Concepts and experiments in computational reflection, In Proc. of Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA) (Or-
lando, Florida, USA), vol. 7, ACM Press, 1987, pp. 147–155.

11. MAIS Consortium, MAIS: Multichannel Adaptive Information Systems,
http://black.elet.polimi.it/mais/.

12. V. Marangozova and F. Boyer, Using reflective features to support mobile users, In
Walter Cazzola, Shigeru Chiba, and Thomas Ledoux, editors, On-Line Proceedings
of ECOOP’2000 Workshop on Reflection and Metalevel Architectures, June, 2000.

13. A. Maurino, B. Pernici, and F.A. Schreiber, Adaptive behaviour in financial in-
formation system, Workshop on Ubiquitous Mobile Information and Collaboration
Systems (Klagenfurt/Velden, Austria), June, 2003.

14. K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, QoS-aware middleware for ubiqui-
tous and heterogeneous environments, IEEE Communications Magazine 39 (2001),
no. (11), 140–148.

15. N.Fenton, Software metrics, a rigorous approach, Chapmann & Hall, 1991.
16. R. Raymond, F. Liao, and A. T. Campbell, A utility-based approach for quantitative

adaptation in wireless packet networks, Wireless Networks 7 (2001), no. 5, 541–557.
17. D. Reiniger, R. Izmalov, B. Rajagopalan, M. Ott, and D. Raychaudhuri, Soft Qos

control in the watmnet broadband wireless system, IEEE Personal Communications
Magazine Feb (1999), 34–43.

18. K. Siau, E.P. Lim, and Z. Shen, Mobile commerce: Promises, challenges, and re-
search agenda, Journal of Database Management 12 (2001).

19. R. Steinmetz and L. Wolf, Quality of service: Where are we?, Proc. of IFIP Inter-
national Workshop on Quality of Service (IWQOS’97) (New York City, New York,
USA), IEEE Press, 1997, pp. 211–222.

20. V. Zariskas, G. Papatzanis, and C. Stephanidis, An architecture for a self-adapting
information system for tourists, Proc. of the Workshop on Multiple User Interfaces
over the Internet: Engineering and Applications Trends (in conjunction with HCI-
IHM’2001) (Lille, France), 2001.

	Introduction
	Reference Example
	Distribution Channel Model
	Conceptual Model
	Logical Model
	Technological Model

	General Architecture
	Constraints
	E-service Composition Platform
	Interaction Enabling Platform
	Reflective Platform

	Adaptive Strategies
	Adaptive Functions
	Validate Function
	Adapt Function
	Reduce_level Function

	Related Work
	Conclusion

