
GoVisual for CASE Tools
Borland Together ControlCenter and

Gentleware Poseidon – System Demonstration

Carsten Gutwenger, Joachim Kupke, Karsten Klein, and Sebastian Leipert

Research Center caesar
Ludwig-Erhard-Allee 2

D-53175 Bonn, Germany
{gutwenger|kklein|kupke|leipert}@caesar.de

Abstract. The Unified Modeling Language (UML) has become the soft-
ware industry’s standard notation for representing software architecture
and design models. UML diagrams play an important role in the engi-
neering and re-engineering processes of software systems. Of particular
interest from the Graph Drawer’s perspective are UML class diagrams
whose purpose is to display class hierarchies (generalizations), associa-
tions, aggregations, and compositions in one picture. The combination
of hierarchical and non-hierarchical relations poses a special challenge
to a graph layout tool. We present an implementation of our technology
within well-known modelling tools.

1 Introduction

The Unified Modeling Language (UML) by Booch, Rumbaugh and Jacobson
(see [1]) provides a mainly graphical notation to represent the artifacts of a soft-
ware system. The most important UML diagram type for software architects is
the UML class diagram consisting of classes represented by rectangular regions
containing the class name, attributes and operations of the class, and differ-
ent kinds of relationships between classes that are represented as lines. Since
these diagrams are a means of communication between customers, developers,
and others involved in the software engineering and re-engineering process, it is
critical that the diagrams present information clearly. An appropriate layout of
these diagrams can assist in achieving this goal (see [7]).

We have developed an approach for automatically laying out UML class di-
agrams in an orthogonal fashion (see [6]). Our approach distinguishes between
two kinds of relationships: generalizations representing inheritance in class hi-
erarchies and associations including aggregations and compositions. Inheritance
hierarchies are emphasized in several ways:

– generalizations belonging to the same hierarchy are drawn following the same
direction,

– nesting of different hierarchies within each other is avoided,

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 123–128, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

124 C. Gutwenger et al.

– generalizations leading to the same super class join prior to reaching the
super class,

– highlight the various class hierarchies by different colors,
– and highlight the generalizations by color.

For a clear visualization of the specific combination of hierarchical and non-
hierarchical components, we put special emphasis on meeting a balanced mixture
of the above criteria plus the following aesthetic criteria: crossing minimization,
bend minimization, orthogonality, and horizontal labels.

The layout functionalities are provided as plug-ins to achieve a tight integra-
tion into existing tools (in this case, software development tools). This allows the
user to work within a familiar environment without concerning about an extra
user interface for graph layout and the data exchange between the different tools.
Following this strategy, we expect an increasing user acceptance for automatic
layout algorithms.

2 The Plug-in Philosophy

Modern development tools typically come with a graphical software modelling in-
terface. In order to support developers and designers in the software development
process, the automatic layout component has to be accessible within their de-
velopment environment. Therefore we integrated the graph drawing technology
as plug-ins into existing CASE tools. The layout component supports the soft-
ware engineer to manage the software projects by arranging the different model
views from activity diagrams to class diagrams. This approach combines the core
competencies of both the CASE tool provider and the layout tool provider.

This demonstration presents a seamless integration of our technology into
the following two development tools (applications for short in the following):

– Gentleware Poseidon for UML ([5]), a low-cost UML CASE tool. It evolved
from the Open Source project ArgoUML and has a large number of instal-
lations (currently over 400.000).

– Borland Together ControlCenter ([2]), an enterprise development platform
that combines application design, development, and deployment.

After installing the plug-in, a new menu called GoVisual is available within
the application. The menu comes along with new graph layout tool buttons
(see Fig. 1) that give access to various diagram layout algorithms, including the
orthogonal UML layout algorithm as described in [6]. The user is enabled to
apply a layout algorithm to a currently active diagram. Moreover, the user may
adjust options settings of the layout algorithms to meet his aesthetic preferences.

The orthogonal UML layout algorithm is part of the large GoVisual frame-
work of layout algorithms and data structures for the automatic layout of di-
agrams. GoVisual is an object-oriented C++ class library. Our plug-ins work
by accessing the GoVisual API. As both applications are pure Java, we use
our API’s Java Native Interface to access the library. The plug-in core and the

GoVisual for CASE Tools 125

user interface components are written in Java using the application’s plug-in
interfaces.

To make the technology accessible to the end-user, a GoVisual menu is in-
stalled in the main menu bar of the applications. In addition, there are GoVisual
layout buttons inserted into the tool bars (see Fig. 1) to allow direct access to
the new layout functionality.

(a) ControlCenter (b) Poseidon

Fig. 1. Easy access through GoVisual menu and toolbar buttons.

Since layout algorithm parameters are usually hard to understand for users
that do not have an appropriate graph drawing background, we decided to use
a simple option interface that prevents the software-developer from being con-
fronted with these parameters. The options are presented in a user-friendly way,
i.e., the parameters are hidden behind an easy-access interface. The quality of
the crossing minimization procedure, for example, can be selected using a slider
bar, though, behind the scenes, the selection is translated into a distinguished
graph algorithms setting (see Fig. 2).

3 Automatic Layout vs. Built-in Techniques

Automatic layout functionalities should give the user a clear and concise view
of the software model. It integrates into the user’s familiar environment as de-
scribed in Sect. 2, and it offers superior layout capabilities compared to the
layout functions given by the integration platform. Figure 3 shows a sample
UML class diagram. The layout in 3(a) has been created with the automatic
layout functionality of ControlCenter itself. It contains 13 crossings, including
two crossings of generalizations and nine crossings between generalizations and
associations. The diagram is difficult to read and does not reveal enough infor-
mation to the user in order to easily understand the structure of the software
project. It is especially difficult to identify the inheritance hierarchies. The lay-
out given in Figure 3(b) has been computed by the GoVisual plug-in. It shows
only one crossing of two associations. Moreover, the project’s structure becomes
visible at glance. Especially, the three inheritance hierarchies are easy to recog-
nize, since the generalizations within the same class hierarchy are drawn in the
same direction and the three class hierarchies are highlighted by different colors.

126 C. Gutwenger et al.

(a) ControlCenter (b) Poseidon

Fig. 2. GoVisual option pages.

(a) Automatic layout
by Together Control-
Center.

(b) Automatic layout
by GoVisual.

Fig. 3. A Sample UML class diagram automatically laid out by Together Control-
Center (a) and by GoVisual orthogonal UML layout (b). The GoVisual layout also
automatically highlights the three inheritance hierarchies using different colors.

Our techniques clearly outperform the built-in automatic layout algorithms
(see Figs. 3, 4 and 5). The application’s built-in standard layout algorithms
may even hide the diagram structure to an extent where it is nearly unreadable
(see Fig. 4). The Gentleware Poseidon for UML application does not provide an
advanced automatic layout capability (see Fig. 5 (a)).

GoVisual for CASE Tools 127

(a) Automatic layout by To-
gether ControlCenter.

(b) Automatic layout by GoVisual

Fig. 4. A Sample UML class diagram with a tree structure automatically laid out by
Together ControlCenter (a) and by GoVisual Tree Layout (b).

(a) Random layout by Poseidon. (b) Automatic layout by GoVisual.

Fig. 5. A Sample UML class diagram with no layout given by Poseidon for UML (a)
and by GoVisual UML Orthogonal Layout (b).

Some of the GoVisual layout styles are specialized for a certain type of dia-
gram, e.g. the UML class diagram layout styles, others are variations of standard
algorithms that can be applied to all kinds of available (UML) diagrams.

The GoVisual plug-ins provide the following layout styles:

– UML Orthogonal Layout: The unique GoVisual layout technique (see [6]).
– UML Hierarchical Layout: A hierarchical layout especially suited for UML

Class Diagrams (based on [8]).
– Orthogonal Layout having a focus on the minimization of crossings between

edges and the minimization of the number of bends of the edges (based
on [9]).

– Symmetric Layout using an energy-based layout technique (based on [4]).
– Tree Layout for the visualization of non-circular structures (based on [3]).

128 C. Gutwenger et al.

All layout styles provide a set of drawing and optimization algorithms that
can be combined to a layout algorithm that provides the best results for the
user within the chosen layout style. Furthermore a variant of parameters can be
manipulated within each style.

More information about the plug-ins and GoVisual software in general can
be found at http://www.oreas.com.

References

1. G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language User Guide.
Addison Wesley Longman, 1999.

2. Borland Software Corporation. http://www.borland.de/together/controlcenter/.
3. C. Buchheim, M. Jünger, and S. Leipert. Improving Walker’s algorithm to run in

linear time. In M. Goodrich, editor, Graph Drawing (Proc. GD 2002), volume 2528
of LNCS, pages 344–353. Springer-Verlag, 2002.

4. T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Softw.
– Pract. Exp., 21(11):1129–1164, 1991.

5. Gentleware AG. http://www.gentleware.de/products/.
6. C. Gutwenger, M. Jünger, K. Klein, J. Kupke, S. Leipert, and P. Mutzel. A new

approach for visualizing UML class diagrams. In Proceedings of the 1st ACM Sym-
posium on Software Visualization (SoftVis 2003), June 11-13, 2003, San Diego, CA,
2003. To appear.

7. H. Purchase, J.-A. Allder, and D. Carrington. User preference of graph layout
aesthetics: A UML study. In J. Marks, editor, Graph Drawing (Proc. GD 2000),
volume 1984 of LNCS, pages 5–18. Springer-Verlag, 2001.

8. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical systems. IEEE Trans. Syst. Man Cybern., SMC-11(2):109–125, 1981.

9. R. Tamassia. On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput., 16(3):421–444, 1987.

	Introduction
	The Plug-in Philosophy
	Automatic Layout vs. Built-in Techniques

