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Abstract. In this paper we introduce a framework for producing cir-
cular drawings in which the groupings are user-defined. These types of
drawings can be used in applications for telecommunications, computer
networks, social network analysis, project management, and more. This
fast approach produces drawings in which the user-defined groupings are
highly visible, each group is laid out with a low number of edge crossings,
and the number of crossings between intra-group and inter-group edges
is low.

1 Introduction

A circular graph drawing is a visualization in which

— the graph is partitioned into groups,
— the nodes of each group are placed onto a unique embedding circle, and
— each edge is drawn with a straight line.

Circular graph drawing has received increasing attention in the literature
4IT3[T4201211222425]. Kar, Madden, and Gilbert presented a circular drawing
technique for networks in [I3]. This approach partitions the graph into groups,
places the groups onto embedding circles, and then sets the final coordinates of
the nodes. As discussed in [4], an advanced version of this technique is included in
Tom Sawyer Software’s Graph Layout Toolkit (www.tomsawyersoftware.com).

Tollis and Xia present several linear time algorithms for the visualization of
survivable telecommunication networks in [25].

Citing a need for graph abstraction and reduction of today’s large information
structures, Brandenburg describes an approach to draw a path (or cycle) of
cliques in [2].

InFlow [16] is a tool to visualize social networks. This tool produces diagrams
and statistical summaries to pinpoint the strengths and weaknesses within an
organization (www.inflow.net).
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We presented a linear time algorithm for producing circular drawings of bi-
connected graphs on a single embedding circle in [20/21]. This technique was
extended to place a nonbiconnected graph on a single embedding circle in
22]. A framework for producing circular drawings of nonbiconnected graphs on
multiple circles was presented in [20/24]. These techniques require O(m) time
and produce drawings with a low number of edge crossings. More details about
these techniques will be dicussed in Section [2

Kaufmann and Wiese extended our circular approach in [14].
In this approach, the blocktree structures of nonbiconnected graphs are inter-
preted in a different manner which allows finer structures to be shown within the
visualization of a biconnected component. The authors also give an interactive
version of this technique. An advanced version of this approach is included in
yWorks’ yFiles Library (www.yworks.com).

All  of these techniques are very wuseful for applications in
telecommunications[I5], computer networks [20], social network analysis
[16], project management [16], and more. However, with the exception of the
Graph Layout Toolkit (GLT) technique [4[13], these techniques do not allow
the user to define which nodes should be grouped together on an embedding
circle. And in the GLT technique, the layouts of the user defined groups are
themselves placed on a single embedding circle. For some graph structures, this
may not be ideal. In this paper, we present a circular drawing algorithm which
allows the user to define the node groups, draws each group of nodes efficiently
and effectively, and visualizes the superstructure well. We call this approach
user-grouped circular drawing.

An example of an application in which user-grouped circular drawing would
be useful is a computer network management system in which the user needs
to know the current state of the network. It would be very helpful to allow the
user to group the computers by department, floor, usage rates, or other criteria.
See Figure M This graph drawing could also represent a telecommunications
network, social network, or even the elements of a large software project. There
are, of course, many other applications which would benefit from user-grouped
circular drawing.

The remainder of this paper is organized as follows: in Section 2] we review
our previous circular techniques. In Section Bl we introduce a framework for user-
grouped circular drawing. In Section [4, we discuss a force-directed approach in
which node placement is restricted to the perimeter of circles. In Section Bl we
present an algorithm for user-grouped circular drawing. In Section [, we discuss
conclusions and future work.

2 Review of Our Previous Circular Techniques

As mentioned in the previous section, we have presented multiple efficient circu-
lar graph drawing techniques which produce visualizations with a low number
of edge crossings [20121]2224]. Tn this section, we give a brief review of these
techniques.
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Fig. 1. A user-grouped circular drawing.

2.1 Circular Drawings of Biconnected Graphs

In [20)21], we introduced a linear time technique to produce circular graph draw-
ings of biconnected graphs on a single embedding circle. First, it is important to
note the difficulty of this problem. Of course, minimizing the number of crossings
in a drawing is the well-known NP-Complete crossing number problem [1(]. The
more restricted problem of finding a minimum crossing embedding such that all
the nodes are placed onto the circumference of a circle and all edges are repre-
sented with straight lines is also NP-Complete as proven in [I7]. The authors
show the NP-Completeness by giving a polynomial time transformation from
the NP-Complete Modified Optimal Linear Arrangement problem.

In order to produce circular drawings with fewer crossings than previous
techniques, we presented the algorithm CIRCULAR which tends to place edges
toward the outside of the embedding circle. Also, nodes are placed near their
neighbors.

This technique visits the nodes in a wave-like fashion, looking for pair edges
(edges incident to two nodes which share at least one neighbor) which are then
removed. Sometimes, triangulation edges are added to aid this process. It is
the selective edge removal which causes many edges to be placed toward the
periphery of the embedding circle in the visualizations produced by CIRCULAR.
Subsequent to the edge removal, CIRCULAR proceeds to perform a Depth-First
Search (DFS) search on the reduced graph. The longest path of the resulting DFS
tree is placed on the embedding circle and the remaining nodes are nicely merged
into this ordering.

The worst-case time requirement of CIRCULAR is O(m), where m is the
number of edges. An important property of this technique is the guarantee that
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if a zero-crossing drawing exists for a given biconnected graph, CIRCULAR will
find it. Such graphs must be outerplanar. In fact, CIRCULAR was inspired by
the algorithm for recognizing outerplanar graphs presented in [18]. For drawings
which do contain crossings, a postprocessing method which further reduces the
number of crossings can be applied. See for such a method.

Extensive experiments compared CIRCULAR and Tom Sawyer Software’s
GLT. CIRCULAR drawings had 15% fewer crossings. This improvement in-
creased to 30% with the crossing-reduction postprocessing step. Sample drawings
from the experimental study are shown in Figure 2l

Fig. 2. The drawing on the left is produced by the GLT. The drawing on the right is of
the same graph and is produced by CIRCULAR with crossing-reduction postprocessing.
The drawing on the right has 75% fewer crossings than the GLT drawing.

2.2 Circular Drawings of Nonbiconnected Graphs on a Single
Embedding Circle

In [20/22] we presented the algorithm CIRCULAR-Nonbiconnected for produc-
ing circular drawings of nonbiconnected graphs on a single embedding circle.
Given a nonbiconnected graph G, we can decompose G into biconnected compo-
nents. In CIRCULAR-Nonbiconnected, we layout the resulting block-cutpoint
tree on a circle and then layout each biconnected component with a variant of
CIRCULAR.

First, we consider how to attain a circular drawing of a tree. A DFS pro-
duces a numbering that we can use to order the nodes around the embedding
circle in a crossing-free manner. From this result, we know how to order the bi-
connected components around the embedding circle. Next, we need to consider
articulation points which are not adjacent to a bridge (strict articulation points).
Strict articulation points appear in multiple biconnected components. In which
biconnected component should a strict articulation point appear in the circular
drawing? Multiple approaches to this issue are discussed in [20J22]. Due to space
restrictions, we do not discuss these solutions here. A third issue to consider is
how to transform the layout of each biconnected component to fit onto an arc
of the embedding circle. This transformation is called breaking. The resulting
breaks occur at an articulation point within the biconnected component.
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The worst-case time requirement for CIRCULAR-Nonbiconnected is O(m) if
we use CIRCULAR to layout each biconnected component. The resulting draw-
ings have the property that the nodes of each biconnected component (with the
exception of some strict articulation points) appear consecutively. Furthermore,
the order of the biconnected components on the embedding circle are placed
according to a layout of the accompanying block-cutpoint tree. Therefore, the
biconnectivity structure of a graph is displayed even though all of the nodes
appear on a single circle. An example drawing is shown in Figure

Fig. 3. An example drawing produced by CIRCULAR - Nonbiconnected.

2.3 Circular Drawings of Nonbiconnected Graphs on Multiple
Embedding Circles

In [20/24] we presented Algorithm CTRCULAR-withRadial which produces cir-
cular drawings of nonbiconnected graphs on multiple embedding circles. As in
CIRCULAR-Nonbiconnected, we first decompose the given graph G into bicon-
nected components. Then we layout the block-cutpoint tree with a variant of
the radial layout technique [TJ5l9]. Then each biconnected component is laid out
with a variant of CIRCULAR. Many details are omitted here. The worst-case
time requirement is O(m).

CIRCULAR-~withRadial is a very useful technique and extension of this work
to include interactive schemes has been presented by Kaufmann and Wiese in
[[4]. CIRCULAR-withRadial groups given graphs by their biconnected compo-
nents. This grouping helps to provide a logical, beneficial view of nonbiconnected
graphs, however in some cases it would be helpful to allow the user to define
which nodes should be placed together on an embedding circle. We present such
an algorithm in Section B.

3 A Framework for User-Grouped Circular Drawing

The problem of producing circular drawings of graphs grouped by biconnectivity
is quite different from the problem of drawing a graph whose grouping is user-
defined. In the latter case, there is no known structure of either the groups or
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the relationship between the groups. Therefore, we must use a general method
for producing this type of visualization. The four goals of a user-grouped circular
drawing technique should be:

1. the user-defined groupings are highly visible,

2. each group is laid out with a low number of edge crossings,

3. the number of crossings between intra-group and inter-group edges is low,
and

4. the layout technique is fast.

We know from previous work in clustered graph drawing [6[7/812] that the
relationship between groups is often not very complex. We take advantage of
this expectation in this framework. Define the superstructure G of a given graph
G = (V,E, P), where P is the node group partition, as follows: the nodes in G
represent the elements of P. For each edge e € E which is incident to nodes in two
different node groups, place an edge between nodes representing the respective
groups in G4. The type of structure which we expect G to have should be
visualized well with a force-directed [3J5] technique, therefore we will layout
the superstructure G5 with this approach. Since G will likely not be a very
complicated graph, it should not take much time to achieve a good drawing
with a force-directed technique.

The node groups themselves will be either biconnected or not and since CIR-
CULAR and CIRCULAR-Nonbiconnected can layout biconnected and nonbi-
connected graphs on a single embedding circle in linear time and have been
shown to perform well in practice, we also will use those techniques here.

We have now addressed how to achieve goals 1 and 2 with good speed. How-
ever, in order to produce good user-grouped circular graph drawings, we must
successfully merge these two techniques so that we can simultaneously reach
goals 1,2, and 3. And, of course, we need a fast technique in order to achieve
goal 4. Attaining goal 3 is very important to the quality of drawings produced
by a user-grouped circular drawing technique. As shown in [19], a drawing with
fewer crossings is more readable. It is especially important to reduce the num-
ber of intra-group and inter-group edge crossings as those can particularly cause
confusion while interpreting a drawing. See Figure @l How can we achieve this
low number of crossings? We must place nodes which are adjacent to nodes in
other groups (called outnodes in [I13]) close to the placement of those other
nodes. A force-directed approach is a good way to attain this goal since it would
encourage outnodes to be closer to their neighbors. Traditional force-directed
approaches [BJ5] will not work here though, because we need to constrain the
placement of nodes to circles. In Section H, we present a force-directed approach
in which the nodes are restricted to appear on circular tracks. With the use of
this technique we will reach goal 3. As will be discussed, we can do this in a
reasonable amount of time.

As with most force-directed techniques, the initial placement of nodes has a
very significant impact on the final drawing [35]. Therefore it is important to
have a good initial placement. This is why we should layout the superstructure
and each node group first. At the completion of those steps, we should have the
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Fig. 4. Example of intra-group and inter-group edge crossings.

almost-final drawing. It will then be a matter of fine-tuning the drawing with
our new circular-track force-directed technique. And as shown in , once you
have an almost-final drawing, it does not take much time for a force-directed
technique to converge.

4 Circular-Track Force-Directed

In order to adapt the force-directed paradigm for circular drawing, we need a
way to guarantee that the nodes of a group appear on the circumference of
an embedding circle, the circular track. The nodes are restricted to appear on
the circular track, but are allowed to jump over each other and appear in any
order. See Figure Bl And as in the force-directed approach, we want to minimize
the potential energy in the spring system which is modelling the graph. In this
section, we describe how this circular-track adaptation can be achieved.

Fig. 5. Circular-track force-directed technique.

First, we need to look at node coordinates in a different way. Node i belongs to
group « and is located at position (x;,y;). Given that the center of the embedding
circle on which « is located is at (x4, yo) and the radius of that circle is r, we
can restate the coordinates of ¢ in the following way:

Ty = To + 1o * cos(0;) (1)
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Yi = Yo + T x si0(6;) (2)

Remember that Hooke’s Law [I1] gives us the following equation for the
potential energy V' in a spring system:

V= Z kijl(@ — )% + (yi — y;)?] (3)

where k;; is the spring constant for the spring between nodes ¢ and j. Equa-
tion (3) can be rewritten using (1) and (2):

V=Y pen kis (2 + 7o cos(0:)) = (25 + g * cos(0;)))* +
(Yo + 70 * sin(6:)) = (yp + 15 * sin(6)))’] (4)

where node j belongs to group 3, (3, yg) is the center and rg is the radius
of the embedding circle on which § appears. Following through on the minus
signs, we rewrite:

V= Z(i,j)EE kij [(To + 70 x cos(0;) — x5 — 15 % cos(0;))* +
(Yoo + 70 * 510(0;) — Ys — T * Sin(ej))Q] (5)

We can find a minimal energy solution on variables x, y and 6. It is interesting
to note that if ¢ and j are on the same circle, then x, and xg are equivalent as
are Yy, and yg. And, of course, 1, = rg. Now we rewrite equation (5):

V = Z kijlra(cos(6;) — cos(ﬂj))2 + 7o(sin(6;) — Sin(ﬁj))2)] (6)

(i,5)eE

We can calculate r, from the number of nodes in «, so that means that
finding the minimum V' is now a one-dimensional problem based on finding the
right set of s. When we combine (5) or (6) with equations for magnetic repulsion
to prevent node occlusion, we have a force-directed equation for which the nodes
of a group lie on the circumference of a circle. Now we extend equation (5) to
include repulsive forces.

pij = (T + 7o * cos(0;) — x5 — 15 % cos(0;))* +
2

] (7)

V= Z kijpij + Z gz‘jL (®)

(,j)€E Gjevxy P

(Yo + 7o * 8510(0;) — yp — 75 * sin(0;))

where g;; is the repulsive constant between nodes ¢ and j. The force on node
7 by node j is:
V(0; + e, (9j> — V(ei — €, Gj)
2¢

F, = 9)

where € is a very small constant.
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Another important consideration is the set of spring constants used in the
above equations. It is not necessary for the spring constant to be the same
for each pair of nodes. It is also possible for these constants to change during
different phases of execution.

5 A Technique for Creating User-Grouped Circular
Drawings

Now that we have a force-directed technique in which the nodes are placed on
circular tracks, we need to show how we will successfully merge the force-directed
approach and circular drawing techniques of [202T22]24]. We now present a
technique for creating user-grouped circular drawings.

Algorithm 1 CIRCULARwithFORCES

Input: A graph G = (V, E, P).
Output: User-grouped circular drawing of G I'.
1. Determine the superstructure G of G.
2. Layout G5 with a basic force-directed technique.
3. For each group p; in P
a) If the subgraph induced by p;, G;, is biconnected
layout G; with CIRCULAR.
b) Else layout G; with CIRCULAR-Nonbiconnected.
. Place the layout of each group p; at the respective location found in Step 2.
. For each group p;
a) rotate the layout circle and keep the position which has the lowest local
potential energy.
b) reverse the order of the nodes around the embedding circle and repeat
Step 5a.
c¢) if the result of Step 5a had a lower local potential energy than that of
Step 5b revert to the result of Step bHa.
. Apply a force-directed technique using the equations of Section [ to G.

Tt~

=)

Going back to the four goals discussed in Section Bl we will attain goal 1
by using a basic force-directed technique to layout the superstructure. We will
attain goal 2 by laying out each group with either CIRCULAR or CIRCULAR-
Nonbiconnected. Attaining goal 3 means successfully merging the results of the
force-directed and circular techniques.

Once we have the layout of the superstructure and each group, we place the
layout of each group at the respective location found during the layout of the
superstucture. Now we have an almost-final layout: it is a matter of rotating the
layouts of the groups and maybe adjusting the order of nodes around the embed-
ding circle. Since we know that CIRCULAR and CIRCULAR-Nonbiconnected
produce good visualizations, we should change these layouts as little as possi-
ble. So first, we will fine-tune the almost-final drawing by rotating each layout
and keeping the rotation which has the least local potential energy. We rotate
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each embedding circle through n, positions, where n, is the number of nodes
in the group a. With respect to determing local potential energy, we need to
determine the lengths of inter-group edges which are incident to the nodes of
a. The rotation of choice should minimize the lengths of those edges. In other
words, we choose the rotation in which as many nodes as possible are close to
their other-group neighbors. Since for each embedding circle we try n,, positions
and examine the length of o’s incident inter-group edges at each position, then
the rotation step will take O(n * Mjnter—group) time for the entire graph, where
Minter—group 18 the number of inter-group edges. As discussed in Section B we
expect Minter—group <K m. Then we will “flip” each layout and again rotate. We
keep the rotation which has the least local potential energy. After these steps,
it is still possible that some nodes will be badly placed with respect to their re-
lationships with nodes in other groups. In other words, those placements cause
intra-group and inter-group edges to cross. In order to address this problem, we
will apply the force-directed technique described in Section Hl. The result of this
step will be the reduction of intra-group and inter-group edge crossings since
nodes will be pulled to the side of the embedding circle which is closer to their
other-group relatives.

Because Algorithm [0 makes use of a force-directed technique, the worst-
case time requirement is unknown. However, in practice, we expect the time
requirement to be O(n?) for the following reasons: Step 1 requires O(m) time.
Step 2 will be on a small graph and should not require much time to reach
convergence. Step 3 requires O(m) time. Step 4 requires O(n) time. Step 5
require O(n * Minter—group) time. Since Step 6 is a force-directed technique it
could take O(n?) time in practice, however the result of the previous steps will
be an almost-final layout and thus should not need much time to converge.
It was evidenced in [23] that when a force-directed technique is applied to an
almost-final layout, it does not take much more time for convergence to occur.
Therefore, in practice we expect this step to require O(n?) time. Thus, we have
attained goal 4 from Section Bl

Fig. 6. Sample user-grouped circular drawing from our preliminary implementation.

We have done a preliminary implementation of CIRCULARwithFORCES in
TCL/TK. In this implementation, all nodes and embedding circles are given an
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arbitrary initial placement. Then the force-directed equations of Section [4] are
applied to the graph with the placement of group embedding circles frozen. See
Figure [6] for a sample drawing.

An interesting behavior we noticed is that the drawing with minimal energy
is not necessarily the best circular drawing. In circular drawing, a major goal is
to reduce edge crossings. However, it is well known [3] that reducing crossings
sometimes means the compromise of other aesthetics, especially area. And area
is related to minimum energy in spring systems. We propose adding springs from
each node to its initial placement on the plane with the spring constants for these
springs being high. This should keep these nodes from gravitating towards each
other too much and causing extra crossings. We also suggest creating dummy
nodes which are placed in the center of each embedding circle and attaching
strong springs from them to every node in their respective group.

6 Conclusions and Future Work

In this paper, we have presented a framework for creating circular graph draw-
ings in which the grouping is defined by the user. This framework includes the
successful merging of the force-directed and circular graph drawing paradigms.
We introduced the algorithm CIRCULARwithFORCES that produces drawings
in which the user-defined groupings are highly visible, each group is laid out with
a low number of edge crossings, and the number of crossings between intra-group
and inter-group edges is low. This layout technique is also fast.

In the future we would like to extend this approach to include layouts in
which nodes are placed on the periphery of shapes other than circles or on
curves. We would also like to develop a technique which uses this approach in
three dimensions.

Acknowledgements. We would like to thank Dr. Andrew Urquhart for his
assistance with our circular-track force-directed equations.
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