A More Practical Algorithm for Drawing
Binary Trees in Linear Area with
Arbitrary Aspect Ratio*

Ashim Garg and Adrian Rusu

Department of Computer Science and Engineering
University at Buffalo, Buffalo, NY 14260
{agarg,adirusu}@cse.buffalo.edu

Abstract. Trees are usually drawn using planar straight-line drawings.
[[] presented an algorithm for constructing a planar straight-line grid
drawing of an n-node binary tree with area O(n) and any pre-specified
aspect ratio in the range [n~™%,n%], where 0 < o < 1 is any constant,
in O(nlogn) time. Unfortunately, the algorithm of [I] is not suitable for
practical use. The main problem is that the constant hidden in the “Oh”
notation for area is quite large (e.g., it can be as large as 3900).

In this paper, we have made several practical improvements to the al-
gorithm, which make it suitable for practical use. We have also con-
ducted experiments on this newer version of the algorithm for randomly-
generated and complete binary trees with up to 50,000, and 65,535
nodes, respectively. Our experiments show that it constructs area-
efficient drawings in practice, with area at most 10 times and 8 times
the number of nodes for randomly-generated and complete binary trees,
respectively.

1 Introduction

A drawing I of a tree is a straight-line drawing, if each edge is drawn as a single
line-segment. I" is a grid drawing if all the nodes have integer coordinates. I" is
a planar drawing, if edges do not intersect each other. Here, we concentrate on
grid drawings. So, we will assume that the plane is covered by a rectangular grid.
Let I' be a grid drawing. Let R be the smallest rectangle with sides parallel to
the X- and Y-axes, respectively, that covers I" completely. The width (height) of
I" is equal to 14+ width of R (1+height of R). The area of I' is equal to (1+width
of R)-(14height of R), which is equal to the number of grid points contained
within R. The aspect ratio of I is the ratio of its width and height.

* Research supported by NSF CAREER Award 11S-9985136, NSF CISE Research
Infrastructure Award No. 0101244, and Mark Diamond Research Grant No. 13-
Summer-2003 from GSA of The State University of New York.

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 159-[I65] 2004.
© Springer-Verlag Berlin Heidelberg 2004

160 A. Garg and A. Rusu

2 Our Result

Planar straight-line drawings are more esthetically pleasing than non-planar
polyline drawings. Grid drawings guarantee at least unit distance between the
nodes, and the integer coordinates of the nodes allow the drawings to be dis-
played in a display surface, such as a computer screen, without any distortions
due to rounding-off errors. Giving users control over the aspect ratio of a draw-
ing allows them to display the drawing in different kinds of display surfaces with
different aspect ratios. Finally, it is important to minimize the area of a drawing,
so that the users can display it in small display surfaces also.

[1] presented an algorithm for constructing a planar straight-line grid drawing
of an n-node binary tree T' with area O(n) and with any pre-specified aspect ratio
A in the range [n~ %, n®], where 0 < a < 1 is any constant, in O(nlogn) time
(the algorithm actually takes three input parameters: T, A, and a user-defined
constant €, such that 0 < e <1 and n=¢ < A < n°).

While the algorithm of [1] was significant from a theoretical point of view, it
suffered from the following drawbacks, that made it unsuitable for practical use:

— The constant ¢ hidden in the “Oh” notation for area can be quite large (e.g.,
it can be as large as 3900 for e = 0.6, and A = 1). One might argue that ¢
is really the worst-case bound, and the algorithm might perform better in
practice. However, the problem is that given a tree T' with n nodes, and two
numbers € and A as input, the algorithm will always pre-allocate a rectangle
R with size ezactly equal to cn, and draw T within R. Thus, the area of R is
always equal to the worst-case area, and correspondingly, the drawing also
has a large area. This is the major drawback of this algorithm.

— Also, it uses another algorithm, called Algorithm u*-HV-Draw, as a subrou-
tine. This increases the complexity of implementing the algorithm.

In this paper, we have made several practical improvements to the algorithm,
which make it more suitable for practical use: (Note that the area of the drawing
constructed by this newer version of the algorithm is still O(n))

— We have developed a newer version of the algorithm that does not require
the pre-assignment of a rectangle with the worst-case area to draw a tree.
Instead, it only pre-assigns an aspect ratio to the tree, which is used to draw
the tree recursively in a bottom-up fashion. This makes it possible for the
algorithm to construct a more area-efficient drawing in practice.

— This newer version does not require Algorithm u*-HV-Draw as a subroutine,
which makes it easier to implement.

— The proof for the area being O(n) given in [I] is based on a theorem by
Valiant (Theorem 6 of [3]). Unfortunately, the most natural way of using the
theorem seemed to be requiring the pre-assignment of a rectangle (with a
large area). Hence, developing an algorithm that does not pre-assign a rect-
angle required developing a new proof. Correspondingly, we have developed
a new proof that does not use the theorem. Instead, it simply uses Induction.

A More Practical Algorithm for Drawing Binary Trees 161

— We have also implemented this newer version, and experimentally evaluated
its performance for randomly-generated binary trees with up to 50,000 nodes,
and for complete binary trees with up to 65,535 = 2'6 — 1 nodes. Our
experiments show that it constructs area-efficient drawings in practice, with
area at most 8 times the number of nodes for complete binary trees, and at
most 10 times the number of nodes for randomly-generated binary trees.

Due to space limitations, in this paper, we only present a brief overview of
this newer version of the algorithm. Full details are given in [2].

3 Preliminaries

Let T be an n-node binary tree, with one distinguished node v, which has at
most one child. v is called the link node of T'. T is an ordered tree if the children
of each node are assigned a left-to-right order. A partial tree of T is a connected
subgraph of T'. If T" is an ordered tree, then the leftrmost path p of T' is the maximal
path consisting of nodes that are the left children of their parents, except the
first one, which is the root of T'; the last node of p is called the leftmost node of
T. T is an empty tree, if it has zero nodes in it.

Let I' be a planar straight-line grid drawing of T'. I" has a good aspect ratio,
if its aspect ratio is in the range [n~%, n®], where 0 < o < 1 is a constant. Let r

be the root of T'. Let u* be the link node of T'. I' is a feasible drawing of T, if it
has the following three properties:

— Property 1: The root r is placed at the top-left corner of I'.

— Property 2: If u* # r, then u* is placed at the bottom boundary of I'.
Moreover, we can move u* downwards in its vertical channel by any distance
without causing any edge-crossings in I'.

— Property 3: If «* = r, then no other node or edge of T is placed on, or
crosses the vertical and horizontal channels occupied by r.

Theorem 1 (Separator Theorem [3])). Every n-node binary tree T contains
an edge e, called a separator edge, such that removing e from T splits T into two
trees with at most (2/3)n nodes each. Moreover, e can be found in O(n) time.

4 Our Tree Drawing Algorithm

Let T be a n-node binary tree with a link node u*. Let A and € be numbers such
that 0 < e <1, and n=¢ < A < nf. A is called the desirable aspect ratio for T
Our tree drawing algorithm, called DrawTree, takes €, A, and T as inputs,
and uses a simple divide-and-conquer strategy to recursively construct a feasible
drawing I" of T', by performing the following actions at each recursive step:

— Split Tree: Convert T into an ordered tree, in which u* is the leftmost node.
Using Theorem [, find a separator edge e = (u,v). Using e, split T into at

162 A. Garg and A. Rusu

most five partial trees by removing at most two nodes and their incident
edges from it. We get two cases: in Case 1 (see Figure [[(a)), e is not in
the leftmost path of T, and in Case 2 (see Figure[Dl(b)), e is in the leftmost
path of T'. The partial trees obtained in Case 1 are T4, 13,171,152, Tc, and
in Case 2 are T4, Tg,Tc. The nodes removed are a and u in Case 1, and
u in Case 2. Based on which partial trees are empty, we get 7 subcases for
Case 1 and 8 subcases for Case 2. These subcases are described in detail in [2]
(Figures M(a), and @(b) show the subcases for Case 1 and 2, respectively, in
which all the partial trees are non-empty).

— Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ax to
each partial tree T},. Let ng be number of nodes in T}. T}, is a large partial tree
of T if either A > 1 and ny, > (n/A)"/0+9) or A <1 and ny > (An)Y/(+e);
Ty is a small partial tree otherwise.

The assignment of Ay to T}, is done as follows: Let xp = ny/n.

o If A > 1: If T} is a large partial tree of T, then A = z;A, otherwise
(i.e., if T}, is a small partial tree of T') Ay =n, .

o If A < 1: If T} is a large partial tree of T, then Ay = A/xy, otherwise
(i.e., if Ty is a small partial tree of T') A = ng.

Moreover, if A > 1, and T}, = T4 or T = 1j, then the value of A; is
changed to 1/Aj. This is done so because later in Step Compose Drawings,
when A > 1, Ty and T} are rotated by 90°, when constructing I".
Intuitively, the above assignment strategy ensures that each partial tree gets
a good desirable aspect ratio.

— Draw Partial Trees: Recursively construct a feasible drawing Iy of each par-
tial tree T}, with A, as its desirable aspect ratio.

— Compose Drawings: Arrange the drawings of the partial trees, and draw the
nodes and edges, that were removed from T to split it, to obtain a feasible
drawing I" of T'. If A < 1, then the drawings of the partial trees are stacked
one above the other, and if A > 1, they are placed side-by-side. Also note
that when A > 1, the drawing of T4 and T} are rotated clockwise by 90° and
flipped left-to-right before placing in I'. Figure[ll(c) and [[(e) (Figures [dI(d)
and [1I(f)) show the arrangement, when A < 1, and A > 1, respectively, for
the case shown in Figure[l(a) (Figure [[(b)). For the arrangement in all the
subcases of Case 1 and 2, see [2].

Figure [shows a drawing of the complete binary tree with 63 nodes con-
structed by Algorithm DrawTree, with A =1 and € = 0.2.

Theorem 2. Let T be a binary tree with n nodes. Given any number A, where
n~* < A < n®, for some constant o, where 0 < o < 1, we can construct in
O(nlogn) time, a planar straight-line grid drawing of T with O(n) area, and
aspect ratio A, using Algorithm DrawTree.

Proof. Omitted here due to lack of space. See [2] for the proof.

A More Practical Algorithm for Drawing Binary Trees 163

Fig. 1. General structure of tree 7" in (a) Case 1, and (b) Case 2, respectively; Drawing
T, when A < 1, in (¢) Case 1, and (d) Case 2, respectively, and when A > 1, in (e)
Case 1, and (f) Case 2, respectively.

[ot
:ETF e

Fig. 2. Drawing of the complete binary tree with 63 nodes constructed by Algorithm
DrawTree, with A =1 and ¢ = 0.2.

5 Experimental Results

We have implemented the algorithm using about 2100 lines of C++ code, and
evaluated its performance on two types of binary trees, namely, randomly-
generated, with up to 50,000 nodes, and complete, with up to 65,535 nodes.

Recall that the algorithm takes three values as input: a binary tree T' with
n nodes, a number €, where 0 < € < 1, and a number A in the range [n~¢, n€).

The performance criteria we have used to evaluate the algorithm is the ratio
c of the area of the drawing constructed of 7', and n.

To evaluate the algorithm, we varied n up to 50, 000 for randomly-generated,
and up to 65,535 = 216 — 1 for complete binary trees. For each n, we used five
different values for €, namely, 0.1, 0.25, 0.5, 0.75, and 0.9. For each (n,¢) pair,
we used 20 different values of A uniformly distributed in the range [1,n]. The
performance of the algorithm is symmetrical for A < 1 and A > 1. Hence, we
varied A only from 1 through n¢, not from n~¢ through n¢. Hence, in the rest

164 A. Garg and A. Rusu

c=area/n

o - M w s O N ® O O

c=area/n

10

©

Q\HW‘H ‘

O 4N WA N ®

(a) (b)

Fig. 3. (a) Performance of the algorithm, as given by the value of ¢, for drawing a
randomly-generated binary tree T' with e = 0.5, and different values of A, where c=area
of drawing/number of nodes n in T. (b) Projection of the 3D plot of (a) on X Z-plane.

of the section, we will assume that A > 1. For each type of tree (randomly-
generated and complete), and for each triplet (n, A, €), we generated three trees
of that type. We constructed a drawing of each tree using the algorithm, and
computed the value of c¢. Next, we averaged the values of ¢ obtained for the three
trees to get a single value for each triplet (n, A, €) for each tree-type.

Our experiments show that the value of ¢ is generally small, and is at most
10 for randomly-generated, and at most 8 for complete trees. Figure Bl shows
how ¢ varies with n, and A, for € = 0.5 for randomly-generated trees. (See [2],
to see how ¢ varies with n, and A, for all the five values of € for both randomly-
generated and complete binary trees.)

We also discovered that ¢ increases with A for a given n and €. However, the
rate of increase is very small. Consequently, for a given n and e, the range for ¢
over all the values of A is small (see Figure[d). E.g., for n = 10,000, and € = 0.5,
for randomly-generated trees, the range for ¢ is [4.2,5.2].

Similarly, for a given n and A, ¢ increases with e.

Finally, we would like to comment that the aspect ratio A, of the drawing
I' constructed by the algorithm is, in general, different from the input aspect
ratio A. We computed the ratio r of A, and A. We discovered that r is close
to 1 for A = 1, generally decreases as we increase A, and can get as low as 0.1
for A = nf. However, we also discovered that for a large range of values for A,
namely, [1, min{n¢, n/log? n}], r stays within the range [0.8,1.5], and so is close
to 1. Hence, if we need to construct a drawing with aspect ratio exactly equal
to A, we can do so by adding enough “white space” to I'. This will increase the
area of I' by a factor of at most max{1/0.8,1.5} = 1.5 (assuming that A is in
the above-mentioned range). Hence, the area of I" will still be small.

A More Practical Algorithm for Drawing Binary Trees 165
References

1. A. Garg and A. Rusu. Straight-line drawings of binary trees with linear area and
arbitrary aspect ratio. In Proc. 10th International Symposium on Graph Drawing
(GD 2002), volume 2528 of LNCS, pages 320-331. Springer-Verlag, 2002.

2. A. Garg and A. Rusu. A more practical algorithm for drawing binary trees in linear
area with arbitrary aspect ratio. Technical Report No. 2003-12, Department of
Computer Science and Engineering, University at Buffalo, Buffalo, NY, 2003.

3. L. Valiant. Universality considerations in VLSI circuits. [EEE Trans. Comput.,
C-30(2):135-140, 1981.

	Introduction
	Our Result
	Preliminaries
	Our Tree Drawing Algorithm
	Experimental Results

