
GraphEx: An Improved Graph Translation
Service

Stina Bridgeman

Computer Science Department, Colgate University, Hamilton, NY 13346 USA
sbridgeman@mail.colgate.edu

Abstract. The Internet-based translation service GraphEx automati-
cally converting between different graph formats, making it easier for
users to take advantage of the full variety of graph drawing tools.
GraphEx builds on the prototype translation component of the Graph
Drawing Server [2], improving the handling of information mismatch
problems and adding support for user-defined formats.

1 Introduction

The development of a wide variety of graph drawing tools and libraries has
led to the creation of many different formats for representing graph-structured
information. The simplest formats contain only a list of edges to describe the
combinatorial structure of the graph, while the most sophisticated allow labels,
geometry, and other attributes to be associated with the graph structure. The
variety of graph formats can make it difficult for people to take full advantage of
the available graph drawing technology because of the effort required to translate
existing graph data to the required format(s).

One solution is to develop a common graph interchange format flexible
enough to support application-specific data. Efforts in this direction include
GML [4], GraphXML [3], GXL [5], and GraphML [1]. These formats specify a
core representation for the combinatorial structure of the graph and a frame-
work for adding arbitrary attributes. Well-behaved applications are expected to
quietly ignore (and possibly preserve) unknown attributes.

However, problems remain: there are multiple competing interchange for-
mats, applications already in existence still use their own specialized formats,
and graph-structured data arises in many domains and a standard format in one
domain may be unfamiliar in another. Furthermore, implementors of a new tool
may define their own format because the existing formats do not support the
features they need or are too complex to parse, or because they are not aware
of a suitable format. As a result, there is a need for a graph translation service
which can automatically convert between different graph formats.

GraphEx (for Graph Exchange) improves on the graph translation component
of the Graph Drawing Server [2] by reducing unnecessary loss of information and
by supporting user-defined formats. A key component in reducing information
loss is the incorporation of a merging step to restore attributes lost as a result
of the format required by the desired drawing algorithm.

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 307–313, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



308 S. Bridgeman

GraphXML
core
file

GraphXML
core
DOM

MALF
core
file

MALF
core
string

GraphXML
core
string

MALF−xml
core
DOM

PostScript
core
string

PostScript
core
file

GraphXML
core
file

GraphXML
core
DOM

MALF
core
file

MALF
core
string

GraphXML
core
string

MALF−xml
core
DOM

PostScript
core
string

PostScript
core
file

output subgraphinput subgraph

Fig. 1. An extended translation graph. Dashed lines indicate dummy merging edges.

Section 2 gives an overview of issues to be addressed by a general-purpose
graph translator, section 3 presents the architecture of GraphEx, and section 4
summarizes the contributions of GraphEx and directions for future work.

2 Issues in Graph Format Translation

One of the primary issues facing a graph format translator is the fact that nearly
any pair of graph formats will be incompatible in at least one aspect.

Structural mismatch refers to incompatibility of the graph structures which
can be represented by the format: format A supports hierarchical graphs or
multiedges, for example, while format B does not. In this case translation is
impossible unless the original graph can somehow be encoded in a way that is
compatible with the new format.

Information mismatch addresses incompatibility of the attributes used to
specify information beyond the graph structure: format A supports attributes
that format B does not, or format A places restrictions on the legal values
of attributes which are different from B’s requirements. A certain amount of
information loss is inevitable when this occurs.

Due to the large number of formats in existence, it is not practical to require
one-step translation filters for every pair of formats. A solution is to use trans-
lation sequences, so that converting from format F0 to format Fn may involve
multiple intermediate formats F1, F2, ..., Fn−1. Unnecessary information loss
can result if an attribute supported by both F0 and Fn is not supported by one
of the intermediate formats F1, ..., Fn−1.

Two translation sequences are involved if a drawing algorithm is used: one
to translate from the user’s input format F0 to the algorithm’s input format
Fk, and one to translate from the algorithm’s output format Fk+1 to the user’s
output format Fn. In addition to within-sequence information loss, unnecessary



GraphEx: An Improved Graph Translation Service 309

information loss can occur if an attribute supported by both F0 and Fn is not
supported by Fk or Fk+1. Furthermore, information can be lost if there is a pair
of formats Fi and Fj such that Fi is converted to Fj in the first translation
sequence, Fj is converted to Fi in the second translation sequence, and the
translations are asymmetric i.e. if a particular attribute x of Fi is converted to
attribute y of Fj in the translation Fi → Fj , but a different attribute z of Fj is
converted to attribute x of Fi in the translation Fj → Fi.

Another issue results from extensible formats such as GML and GraphML:
since users can define their own attributes, a translator cannot be guaranteed to
understand all of the attributes present in a graph description. However, users
often want the output from a drawing algorithm in the same format as their
original input, and it is desirable for the extra application-specific attributes
to be preserved. The matter is complicated by fragile attributes whose values
may be altered the algorithm, as these attributes should not be preserved. Most
formats do not provide an automatic way to identify fragile attributes; GML,
which solves the problem by stipulating a naming convention, is one exception.

3 System Architecture

3.1 The Translation Graph

GraphEx extends the Graph Drawing Server’s idea of a translation graph, a
directed graph which describes all of the format conversions supported by the
service. Figure 1 shows an example of an extended translation graph.

The translation graph is partitioned into two subgraphs, the “input sub-
graph” and the “output subgraph”.

The input and output subgraphs each contain a vertex for each format. A
format is described by a name, a version, and a form. The version primarily
applies to extensible formats, and distinguishes between different attribute sets.
The form distinguishes between different ways a graph in a given format may
be represented: “a graph in GML format” may refer to a filename, URL, string,
parsed object, etc., each of which may require different handling.

The formats supported by GraphEx can be classified into two groups: graph-
oriented formats such as GML and GraphML, and diagram-oriented formats
such as PostScript and GIF. Graph-oriented formats contain an explicit repre-
sentation of the graph structure, while diagram-oriented formats contain only a
graphical representation of a drawing; the graph structure cannot be easily ex-
tracted from a diagram-oriented format. Diagram-oriented formats can generally
only be translated to other diagram-oriented formats.

Edges in the translation graph correspond to translation or merging func-
tions, and are directed from the input format to the output format.

“Translation” refers to anything which changes the form or format of the
input data — a parser is considered to be a translation because it changes the
form from a filename to a parsed object, and a function downloading a remote
URL is a translation because it converts the URL into a local file. Translation



310 S. Bridgeman

edges only connect vertices within a subgraph and are duplicated in the input
and output subgraphs.

Merging operations are used in the second sequence of a two-sequence trans-
lation to restore attributes of the sequence one input graph which are lost as a
result of formats required by the drawing algorithm. The output of the merging
step contains all of the non-fragile attributes from the original input graph plus
attributes present in the current graph from the second translation sequence.
Currently all unknown attributes are copied; an extension will allow the user to
specify which attributes should not be copied.

Merging requires establishing a correspondence between the vertices and
edges of two separate but structurally identical graphs. This is made more diffi-
cult because not all graph formats support unique vertex identifiers, even fewer
support unique edge identifiers, and some formats with unique identifiers do not
guarantee that the identifiers remain associated with the same object if the graph
is processed in some way. Merging establishes a correspondence by attempting to
match vertices according to their unique identifiers, if available. If this is not suc-
cessful, the graph structure is used to determine a partial correspondence which
is then refined further, if necessary, by attempting to match attributes present
in both graphs. Once the vertices have been matched, a similar procedure is
applied to match edges.

Merging edges connect vertices in the input subgraph with vertices in the out-
put subgraph and are directed from the input subgraph to the output subgraph.
Every pair of same-format vertices in the input and output subgraphs must be
connected by a merging edge; dummy edges are included in cases where merging
is not supported (e.g. diagram-oriented formats) or not implemented. To reduce
the amount of work required to support merging, it is generally expected that
merging will only occur between graphs in the same format; however, additional
merges could be incorporated into the translation graph without modifications.

3.2 Performing Translations and Handling Mismatch

A translation sequence is found by finding the shortest path from the input
format in the input subgraph to the output format in the output subgraph.
Since the only connections between these two components are merging edges,
the shortest path is guaranteed to contain exactly one merging edge.

GraphEx supports two options for dealing with formats which are struc-
turally incompatible. One option is to simply not define translations between
such formats, resulting in a disconnected translation graph. If the formats are
truly incompatible, a “translation not possible” error is a reasonable outcome.

A second possibility is to recognize that translating from format A to in-
compatible format B is only impossible if those features of format A which are
incompatible with format B are used. For example, if format A supports multi-
edges but format B does not, the translation only needs to fail if the particular
graph to be converted actually contains multiedges. GraphEx allows these “par-
tial translators” as long as the translation function generates a warning or error
if the graph cannot be translated.



GraphEx: An Improved Graph Translation Service 311

(The possibility of encoding the original graph G as some other graph G′

which can be represented in the target format is ignored, as such an encoding is
typically application-specific and thus is not appropriate for a general-purpose
translator. Encoding functions can be added as algorithms to the Graph Drawing
Server, if desired, and can be explicitly accessed by the user in that way.)

Unnecessary information loss due to information mismatch can be avoided
by providing translations between every pair of formats, or by defining a single
“most powerful format” F and ensuring that F is the only intermediate format
in every translation sequence. Unfortunately, both of these solutions are imprac-
tical: both require a significant amount of work to realize, and there is always
a possibility that a new or user-defined format will contain a feature not sup-
ported by F . Furthermore, the second scheme limits the degree to which existing
translation filters can be incorporated into the service because a specific set of
translations is required.

Instead, GraphEx tries to minimize unnecessary information loss through
edge weights and clever structuring of the translation graph.

Translation edges are assigned weights according to the quality of the trans-
lation: completely compatible formats where no attributes are added or lost have
the lowest weight, followed by translations which add attributes and finally those
which involve a loss of information. This ensures that the best translation se-
quence is chosen if there is more than one possible translation sequence for a
given pair of formats.

It is also envisioned that the translation graph will evolve to contain a small
core of expressive formats (such as those intended as exchange formats), with
each application-specific format linked to one of the core formats. The intention
is that translating from an application-specific format to one of the core for-
mats would not involve any information loss, and that translations between core
formats would involve little or no information loss.

Dummy merging edges always have weight 0 since it is not possible to merge
these formats. The weights of other merging edges depend on the translation
scenario.

In a single-sequence translation or in the first sequence of a two-sequence
translation, merging is not necessary and thus all merging edges are assigned a
weight of 0 so they do not influence the rest of the translation process.

For the second sequence of a two-sequence translation, it is also necessary to
consider the translation required to convert the input for the first sequence to
the input format for the merging step. To ensure that merging happens at the
best possible time, merging edges are assigned a weight corresponding to the
cost of this conversion. If such a translation is not possible, the merging edge is
assigned a weight of ∞.

3.3 User-Defined Formats

The purpose of GraphEx is to allow a user to access a variety of graph drawing
algorithms without having to worry about format translations, but a user cannot
take advantage of the system if her data is not already in one of the formats



312 S. Bridgeman

supported by the service. A new feature of GraphEx is its ability to allow users
to install new formats, translations, and merges, which are then added to the
translation graph and can be automatically and transparently in future drawing
requests. For security, the new items are only available to the user who installed
them.

Currently the user must provide implementations of the translations required
to link the new format to an existing format, including any necessary parsers,
but future plans include simplifying and automating the process to reduce the
burden on the user.

3.4 Implementation Details

The core GraphEx service is implemented in Java; it provides an interface ac-
cessible via Java RMI. Java was chosen because of its portability — a GraphEx
server can be placed on a wide variety of hosts so that it is not necessary to port
existing translation filters to different environments. Java RMI also affords sev-
eral advantages: it automatically handles the marshalling and unmarshalling of
entire objects sent between hosts, and it supports dynamic code loading allowing
Java classes to be distributed at runtime as needed throughout the system. Fur-
thermore, RMI can easily be layered over SSL to provide secure communications
between client and server.

GraphEx also supports user authentication and allows individual translations
to be restricted to certain users.

There is a great deal of flexiblity as to how individual translation filters are
implemented: they can be Java classes, standalone executables, shell scripts, C
or C++ libraries, XSLT transforms (for XML-based formats), or anything else
that can be called from a Java program. Every translation is associated with a
wrapper class which hides details of the invocation of the translation filter and
provides a common interface to the translation service for all translations.

A web-based frontend for GraphEx is under development. This allows the
client to send a request to a webserver which then uses servlets to contact the
translation service to process the request.

4 Conclusions and Future Work

In summary, GraphEx provides an Internet-accessible graph format translation
service. It improves on the original translation service of the Graph Drawing
Server [2] by reducing unnecessary loss of information and adding support for
user-defined formats and additional security. Future work includes development
of a web-based frontend and a more powerful interface to facilitate the specifi-
cation of user-defined formats.



GraphEx: An Improved Graph Translation Service 313

References

1. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall. GraphML
progress report: Structural layout proposal. In Proc. 9th Intl. Symp. Graph Drawing
(GD ’01), volume 2265 of Lecture Notes Comput. Sci., pages 501–512. Springer-
Verlag, 2002.

2. S. Bridgeman, A. Garg, and R. Tamassia. A graph drawing and translation service
on the WWW. Internat. J. Comput. Geom. Appl., 9(4/5):419–446, 1999.

3. Ivan Herman and M. Scott Marshall. GraphXML — an XML-based graph descrip-
tion format. In Joe Marks, editor, Proc. 8th Intl. Symp. Graph Drawing (GD 2000),
volume 1984 of Lecture Notes Comput. Sci., pages 52–62. Springer-Verlag, 2000.

4. M. Himsolt. GML: Graph modelling language. Manuscript, Universität Passau,
Innstraße 33, 94030 Passau, Germany, 1996.
http://infosun.fmi.uni-passau.de/Graphlet/GML/.

5. A. Winter. Exchanging graphs with GXL. In Petra Mutzel, Michael Jünger, and
Sebastian Leipert, editors, Proc. 9th Intl. Symp. Graph Drawing (GD ’01), volume
2265 of Lecture Notes Comput. Sci., pages 485–500. Springer-Verlag, 2002.

http://infosun.fmi.uni-passau.de/Graphlet/GML/

	Introduction
	Issues in Graph Format Translation
	System Architecture
	The Translation Graph
	Performing Translations and Handling Mismatch
	User-Defined Formats
	Implementation Details

	Conclusions and Future Work



