
Fixed Parameter Algorithms for
one-sided crossing minimization Revisited

Vida Dujmović1, Henning Fernau2,3, and Michael Kaufmann2

1 McGill University, School of Computer Science,
3480 University St., Montreal, QC H3A 2A7, Canada,

vida@cs.mcgill.ca
2 Universität Tübingen, WSI für Informatik, Sand 13,

72076 Tübingen, Germany
fernau / mk@informatik.uni-tuebingen.de

3 The University of Newcastle, School of Electr. and Computer Science,
University Drive, Callaghan, NSW 2308, Australia

fernau@newcastle.edu.au

Abstract. We exhibit a small problem kernel for the problem one-
sided crossing minimization which plays an important role in graph
drawing algorithms based on the Sugiyama layering approach. Moreover,
we improve on the search tree algorithm developed in [5] and derive an
O(1.4656k + kn2) algorithm for this problem, where k upperbounds the
number of tolerated crossings of straight lines involved in the drawings
of an n-vertex graph. Relations of this graph-drawing problem to the
algebraic problem of finding a weighted linear extension of an ordering
similar to [7] are exhibited.

1 Introduction and Problem Definition

We consider the following problem k-one-sided crossing minimization, called
k-OSCM for short in this paper: Given: A bipartite graph G = (V1, V2, E) and
a linear order <1 on V1. Parameter: k Question: Is there a linear order < on V2
such that, when the vertices from V1 are placed on a line (also called layer) L1
in the order induced by <1 and the vertices from V2 are placed on a second layer
L2 (parallel to L1) in the order induced by <, then drawing straight lines for
each edge in E will introduce no more than k edge crossings.

We denote by OSCM the optimization version (that is, non-parameterized
version) of this problem. (k-)OSCM is the key procedure in the well-known layout
framework for layered drawings commonly known as the Sugiyama algorithm.
After the first phase (the assignment of the vertices to layers), the order of the
vertices within the layers has to be fixed such that the number of the correspond-
ing crossings of the edges between two adjacent layers is minimized. Finally, the
concrete position of the vertices within the layers is determined according the
previously computed order.

The crossing minimization step, although most essential in the Sugiyama
approach, is an NP-complete problem. The most commonly used method is the

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 332–344, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Fixed Parameter Algorithms 333

layer-by-layer sweep where, starting from i = 1, the order for Li is fixed and
the order for Li+1 that minimizes the number of crossings amongst the edges
between layers Li and Li+1 is determined.

After increasing index i to the maximum layer index, we turn around and
repeat this process from the back with decreasing indices. In each step, an OSCM
problem has to be solved. Unfortunately, this seemingly elementary problem is
NP-complete [6], even for sparse graphs [8]. Jünger and Mutzel [7] transformed
the OSCM problem to a linear ordering problem which they solve with the
branch and cut method.

This elementary graph drawing problem attracted several researchers from
the area of fixed-parameter tractable (FPT) algorithms [2]. The first approaches
to the more general variant of this problem have been published by Dujmović
et al. in [3] and [4]. The last one has been greatly improved by Dujmović and
Whitesides [5] who achieved an O(1.6182kn2) algorithm for this problem.

In this paper, we derive an O(1.4656k + kn2) algorithm, which significantly
lowers the constants involved in the exponential search tree algorithm part.

Moreover, we exhibit a small problem kernel for this problem, which has not
been done before.

More specifically, this means that, with the aid of some reduction rules, we
can arrive at an instance of k-OSCM with the number of vertices involved being
bounded by 3k(k + 1

2).

2 Basics

We start with some formalities. The number of vertices of a graph G = (V, E) is
denoted by n = |V |. For each vertex v ∈ V , let N(v) denote the set of vertices
adjacent to v and let deg(v) = |N(v)| denote the degree of v in G. The subgraph
of G induced by the set of vertices V ′ ⊆ V is denoted by G[V ′]. A bipartite graph
G = (V1, V2, E) together with linear orderings on V1 and on V2 is also called a
drawing of G. This formulation implicitly assumes a drawing of G where the
vertices of V1 and V2 are drawn on two (virtual) horizontal lines, the line L1
corresponding to V1 being above the line L2 corresponding to V2. If u < v for
two vertices on L1 or on L2, we will also say that u is to the left of v. A linear
order on V2 that minimizes the number of crossings subject to the fixed linear
order of V1 is called an optimal ordering and the corresponding drawing of G is
called an optimal drawing. Since the positions of isolated vertices in any drawing
are irrelevant, we disregard isolated vertices of the input graph G in what follows.

If |V2| = 2, then there are only two different drawings. This gives us the
useful notion of a crossing number. Given a bipartite graph G = (V1, V2, E) with
|V2| > 1, for any two distinct vertices a, b ∈ V2, define cab to be the number of
crossings in the drawing of G[{a, b} ∪ (N(a) ∪ N(b))] when a < b is assumed.
Furthermore, for any a ∈ V2 with deg(v) > 0, let la be the leftmost neighbour of
a on L1, and ra be the rightmost neighbour of a. We call two vertices a, b ∈ V2
interfering or unsuited if there exists some x ∈ N(a) with lb < x < rb, or
there exists some x ∈ N(b) with la < x < ra. Otherwise, they are called suited.

334 V. Dujmović, H. Fernau, and M. Kaufmann

Observe that, for {a, b} suited, cab · cba = 0. Dujmović and Whitesides have
shown that, in any optimal ordering < of the vertices of V2, we find a < b if
ra ≤ lb.

This means that all suited pairs appear in their natural ordering.
In the next section we will need the following general notation. A directed

graph (digraph) obtained from an undirected graph G by replacing every edge
{u, v} by the two arcs (u, v) and (v, u) is denoted by D(G). The undirected graph
obtained from a digraph G by putting an edge {u, v} whenever there is an arc
(u, v) in G is denoted by U(G). Finally, the graph complement of G is denoted
by Gc.

It is important to note that we only deal with simple (di-)graphs, i.e., graphs
having no (self-)loops or multiple edges. The set of arcs of a digraph G is denoted
by A(G).

3 Getting a Small Kernel

In this section, we give a drastic reduction of the complexity of k-OSCM. Recall
that a partial order is an irreflexive, asymmetric and transitive relation. A par-
tially ordered set (or poset), denoted by P = (V, A), is a set V taken together
with a partial order A on it. For two distinct elements a, b ∈ V , if either a < b
or b < a in A, then the pair {a, b} is comparable in P ; else the pair is incom-
parable. A partial order is linear if every pair of elements of V is comparable.
If A ⊆ V × V is a partial order on V , then we call any partial order L ⊇ A a
completion of A. More algebraically speaking, it can also be called a (weighted)
linear extension. As is well known, every poset P (V, A) can be represented as a
directed acyclic digraph with vertex set V and arc relation A which is a partial
order. For simplicity, we will equate posets and directed acyclic graphs in the
following, so we refer to posets as ordered or linear digraphs.

Consider the following problem k-weighted completion of an ordering
(k-WCO):
Given: An ordered digraph P = (V, A) and a cost function c mapping
A(D([U(P)]c)) into the nonnegative integers; by setting c to zero for arcs in
A(D(U(P))), we can interpret the domain of c as V (P) × V (P). Parameter: k
Question: Is there a selection A′ of arcs from A(D([U(P)]c)) such that the transi-
tive closure (A′ ∪A(P))+ is a linear order and

∑{c(a) | a ∈ (A′ ∪A(P))+} ≤ k ?
It is quite obvious that OSCM can be solved with the help of WCO; the linear

order which is aimed at is the permutation of the vertices on the second layer
which minimizes the number of crossings involved, so that the crossing number
cab is the cost of the arc (a, b) in the digraph model. Since it is easy to see that
WCO is nondeterministically solvable in polynomial time, and since Eades and
Wormald [6] have shown that OSCM is NP-hard, we can immediately deduce:

Lemma 1. WCO is NP-complete.

Jünger and Mutzel [7] gave an ILP-formulation of the OSCM problem as a
linear ordering problem which they could solve with a branch and cut method.

Fixed Parameter Algorithms 335

In contrast, our algorithm for OSCM (both the kernelization and the search tree
part) can be seen as growing larger and larger parts of the linear order of the
vertices of the second layer we are aiming at. When settling the ordering between
a and b, we also say that we are committing a < b or b < a.

Dujmović and Whitesides have shown that, for each instance of OSCM, suited
pairs appear in their natural ordering in any optimal drawing. That justifies the
following first reduction rule: RR1: For every suited pair of vertices {a, b} from

V2 with cba > 0, commit a < b.

Furthermore, consider a set S ⊆ V2 such that all the vertices in S are adjacent
to the exact same set of neighbours in V1. It is simple to observe that arbitrarily
permuting the vertices of S in any drawing cannot affect the total number of
crossings. This observation justifies the following second reduction rule:
RR2: For every pair of vertices {a, b} from V2 with N(a) = N(b), (arbitrarily)

commit a < b.

Notice that if cab = cba = 0 then (disregarding isolated vertices) deg(a) =
deg(b) = 1 and N(a) = N(b). Therefore, after applying these two reduction rules
to an instance of k-OSCM, we obtain the ordered digraph P = (V2, A), where
a pair of vertices is incomparable in P only if both of the crossing numbers
of that pair are nonzero. Hence, we can assume that c is mapping each arc of
A(D([U(P)]c)) onto a positive integer. We call the corresponding specialized
problem k-positive completion of an ordering (k-PWCO).

Our reasoning up to now shows that this special case is also NP-hard.
Exhaustively applying the following two reduction rules shows that k-PWCO
has a small linear-size problem kernel.

RRLO1:
If v is a vertex in ordered digraph P = (V, A) of maximal degree, that is,

the sum of the indegrees and outdegrees of v equals |V | − 1, then remove v and
consider the instance (P [V − v], k).

To see the soundness of this rule, observe that both P and P [V − v] have
transitive arc relations. After having applied RRLO1 exhaustively, there is, for
each vertex v ∈ V , another vertex v′ ∈ V (P) such that the pair {v, v′} is
incomparable in P . By the positivity assumption, committing v < v′ or v′ < v
will cost at least one “unit” and will, furthermore, at best maximize the degree
of v and v′. By an inductive argument, it follows that the ordered digraph P in
a RRLO1-reduced instance of k-PWCO cannot have more than 2k vertices.

In an ordered digraph P = (V, A), call two incomparable vertices u, v ∈ V

• independent with respect to w if {u, w} and {v, w} are comparable in P ;
• dependent with respect to w if {u, w} or {v, w} are incomparable in P ;
• independent (in P) if {u, v} are independent with respect to all w ∈ V \

{u, v};
• dependent (in P) if {u, v} are dependent with respect to some w ∈ V \{u, v};
• transitive with respect to w if either {u, w} or {v, w} is comparable but not

both.

336 V. Dujmović, H. Fernau, and M. Kaufmann

Being transitive with respect to w means that committing v < u or u < v
commits by transitivity v < w, w < v, u < w or w < u.
RRLO2: If the vertices u and v are independent in a given ordered digraph
P = (V, A) and if c((u, v)) < c((v, u)), then reduce the problem instance to
((V, A ∪ {(u, v)}), k − c((u, v)).

The soundness of RRLO2 is obvious. In fact, this rule is generalizable:
RRLOq for any fixed q > 1: For each connected component C ⊆ V of [U(P)]c

with |C| ≤ q, solve PWCO optimally on P [C].
The reduced instance will see the orderings between all pairs of vertices from

C settled, and the parameter will be reduced accordingly. Note that this implies
that all the vertices of C are isolated in the reduced [U(P)]c and can thus be
deleted by the RRLO1. This new rule yields a kernel of size k q+1

q , since after
exhaustive application of this rule and RRLO1, each connected component of
[U(P)]c has at least (q+1) vertices and thus at least q edges. Correspondingly, at
least q arcs with a weight of at least one per arc have to be added per component,
therefore there are at most k/q components.

In other words, a kernel size of k can be “approximated” with arbitrary
precision. This type of behaviour has not been found in other parameterized al-
gorithms yet. However, this approximation comes at a price: Solving this prob-
lem on graphs with q vertices can only be done in exponential time (assum-
ing P�=NP). Still, arbitrary constants q or q = log k are possible choices for
polynomial-time kernelization algorithms. It is therefore desirable to find easy
optimality criteria for small values of q (as q = 2).

The soundness of the reduction rule RRLOq is readily seen.Assume that C
is a connected component of [U(P)]c. Consider a vertex x �∈ C. Since C is a
connected component in [U(P)]c, x is comparable with each y ∈ C (otherwise, y
and x would be connected in the complement graph). Hence, C can be portioned
into C� = {y ∈ C | y < x} and Cr = {y ∈ C | x < y}. Since C� < x < Cr, either
C� = ∅ or Cr = ∅; otherwise, there would be no connection between vertices of
C� and vertices of Cr in the complement graph. Hence, x will never be ordered
“in-between” two vertices from C. Therefore, we can conclude:

Theorem 1. Fix some 1 < α ≤ 1.5. Then, each instance of k-PWCO admits a
problem kernel of size αk.

Considering k-OSCM in a slightly more general fashion, namely, allowing
some pairs of V2 to be already committed as part of the input, we can conclude:

Corollary 1. Fix some 1 < α ≤ 1.5. Then, each instance of k-OSCM can be
reduced to an instance (P = (V2, A), k) of k-PWCO, with |V2| ≤ αk.

Proof. Applying RRLO1 and RRLO2 (and RRLOq) to k-OSCM exhaustively
results in a partial order on V2 where the crossing numbers of the incomparable
pairs are positive. Therefore, this partial order on V2, together with the positive
crossing numbers of incomparable pairs comprises an instance of k-PWCO, which
by Theorem 1 has the kernel of size |V2| ≤ αk. ��

Fixed Parameter Algorithms 337

This has not yet given us a problem kernel for the original problem, since
|V1| (and hence |E|) has not yet been bounded by a function of k.

With that aim, consider the following simple reduction rule
RRlarge: If cab > k then do: if cba ≤ k then commit b < a else return NO.

This is clearly a sound rule. Moreover notice, that if a vertex a ∈ V2 has
deg(a) > 2k + 1, then for every vertex b ∈ V2, cab > k or cba > k are true.
Therefore, after performing RRlarge exhaustively in combination with RRLO1,
all the vertices of V2 of degree larger than 2k + 1 will have been removed from
the OSCM-instance. This yields:

Theorem 2. For some 1 < α ≤ 1.5, k-OSCM admits a problem kernel G =
(V1, V2, E) with |V1| ≤ (2k + 1)|V2|(≤ 3k(k + 1

2)), |V2| ≤ αk, and |E| ≤ (2k +
1)|V2|.
The following algorithm summarizes how to obtain a problem kernel:

Algorithm 1 (Kernelization for k-OSCM).

Compute the crossing numbers cab for all pairs (a, b).
If k <

∑
a,b∈V2

min(cab, cba) then answer NO.
If k ≥ ∑

a,b∈V2
max(cab, cba) then YES; output an arbitrary linear order.

Apply reduction rules RR1, RR2 (and RR3).
Apply reduction rules RRLO1, RRLO2, and RRlarge exhaustively.

The rule RR3 is derived in Section 6, as it is needed by the search tree part
of our algorithm. For now, while considering kernelization only, we can disregard
this reduction rule. Since computing the crossing numbers is the predominant
computational part (taking time O(kn2) even when combined with RRlarge
according to Dujmović and Whitesides), we conclude that the kernelization pre-
processing takes time O(kn2). As a result of this kernelization, the vertices of
V2 are partially ordered. Our search tree algorithm presented in the next section
can cope with such “pre-set” instances of k-OSCM. Therefore, we will obtain
running time of the form O(f(k) + kn2) for the k-OSCM problem.

4 A General Overview of the Search Tree Algorithm

Our search tree for the OSCM problem slightly deviates from the one constructed
by Dujmović and Whitesides in their paper. Hence, we give some details in what
follows. Consider two distinct vertices a, b ∈ V2 with cab = i and cba = j. Then,
the pair {a, b} is also called an i/j pattern.

As is the standard practice when developing search tree based FPT algo-
rithms, each node of a search tree is associated with a problem instance. In the
case of k-OSCM, we let an instance consist of an ordered digraph P = (V2, A)
and an integer k′. P contains the arcs corresponding to all the pairs of vertices
of V2 committed thus far, and k′ gives the remaining number of allowed edge
crossings, that is, k′ = k − ∑

(v,u)∈A cvu. Initially (in the root node) the arcs

338 V. Dujmović, H. Fernau, and M. Kaufmann

of P are determined by the kernelization. In each node of the search tree, if k′ is
negative, then the node returns NO, otherwise we look for a pair of dependent
vertices {a, b} that form an i/j pattern such that either i+ j ≥ 4, or i = 2, j = 1
and {a, b} is transitive. If such a pair {a, b} is found we branch the problem
instance into two new problems instances. In one we commit a < b and in the
other we commit b > a; consequently, in each problem instance we update the
ordered digraph P and lower the parameter k′ accordingly. (By adding (v, w)
to A and then computing transitive closure (A ∪ (v, w))+ we get the updated
ordered digraph P = (V2, (A∪ (v, w))+).) If no pair as described above is found,
then we commit all the remaining incomparable pairs in P deterministically. The
details and the correctness of this approach will be discussed in Section 7.

The running time of FPT algorithms is dominated by the part exponential
in parameter k. In our case, that part is bounded by the size of the search tree.

We now analyse that size. Firstly, observe that each internal node of our
search tree has two branches. If one branch lowers the parameter k′ by b1, and
the other by b2, we denote the corresponding branching vector by (b1, b2). Since
all i/j patterns with i = 0 or j = 0 are already committed (by the reduction
rules RR1 and RR2 during the kernelization), each internal node of the search
tree has b1 > 0 and b2 > 0. Furthermore, each node that branches on a transitive
2/1 pattern commits by transitivity an extra i/j pattern where i, j > 0. Thus
each internal node has b1 + b2 ≥ 4. Therefore, in the worst case, each node of
our search tree has a branching vector (2, 2) or (3, 1). The size s(k) of the search
tree obeying these branching vectors can be deduced as follows:

• The recurrence corresponding to the (2, 2) branching vector is s(k) = 2s(k−
2) + O(1). Solving this recurrence gives s(k) < 1.4143k.

• The recurrence corresponding to the (1, 3) branching vector is s(k) = s(k −
1) + s(k − 3) + O(1). Solving this recurrence gives s(k) < 1.4656k.

Thus in the worst case, the size of our search tree is less than 1.4656k. This is
in contrast to the search tree with a (2, 1) branching vector derived by Dujmović
and Whitesides that gives s(k) < 1.6181k.

In a node of our search tree that does not branch (that is, in a leaf), all
the incomparable pairs form 1/1 and 2/1 patterns. To be able to commit these
pairs deterministically, we study the structural properties of such patterns in the
next section. In Section 7, we finally give a detailed algorithm for the k-OSCM
problem and the proof of its correctness.

5 Some Structural Properties of 2/1 and 1/1 Patterns

We start this section with the following known and useful equality [1, Chapter 9]:

cab + cba = deg(a) deg(b) − |N(a) ∩ N(b)|. (1)

This implies that if deg(b) ≤ deg(a) then

(deg(a) − 1) deg(b) ≤ cab + cba ≤ deg(a) deg(b). (2)

Fixed Parameter Algorithms 339

We now study 1/1 and 2/1 patterns. As a convention, we will label vertices
from the first layer by (decorated) letters x, y, z and vertices from the second
layer by letters a, b, c. For clarity, we will draw neighbours of a as non-filled
circles and neighbours of b as filled-in circles.

Lemma 2. In the case of 1/1 or 2/1 patterns, and if cba = 1, we must find the
situation depicted in the figure below.

x y

ab

Moreover, each remaining neighbour of a (if any) must be to the right of y
(or y itself), while each remaining neighbour of b (if any) must be to the left of
x (or x itself). (Otherwise, cba > 1.)

Theorem 3. If cab = cba = 1, then there are two basically different situations
(that can be obtained by enhancing the situation sketched in Lemma 2):

1. a and b are each adjacent to x and y only. In other words, deg(a) = deg(b) =
2 and N(a) = N(b), as illustrated in the figure below.

x y

ab

2. Two subcases arise: (a) If deg(b) = 1, then a has (besides x) another neigh-
bour x′ to the right of y. In addition to x and x′, a may only be adjacent to
y. (b) If deg(a) = 1, then b has (besides y) another neighbour y′ to the left
of x. In addition to y and y′, b may only be adjacent to x. Both situations
are illustrated in the figure below.

y x′ x yy′
x

a ab b

Proof. By inequality (2) either deg(a) = deg(b) = 2, or one of a, b has degree
one. Consider first the case where deg(a) = deg(b) = 2.

Then by equality (1), N(a) = N(b) as otherwise cab + cba ≥ 3. Consider now
the case where deg(b) = 1. Then a has (besides x) exactly one neighbour x′

strictly to the right of y as otherwise either the pair {a, b} is suited or cab > 1.

340 V. Dujmović, H. Fernau, and M. Kaufmann

Vertex a cannot have a neighbour strictly to the left of y as otherwise cab > 1.
Thus in addition to x and x′, a can only be adjacent to y. The remaining case
where deg(a) = 1 is symmetric.

��

Theorem 4. Let the pair {a, b} form a 1/2 pattern, that is, cab = 1 and cba = 2.
Then there are two basically different situations:

1. In the following figures, neither a nor b can have any other neighbours.

y′x

ab

x′ y

ab

y = x′x = y′

2. In the following figure (on the left-hand side), in addition to x, x′ and x′′,
vertex a may only be adjacent to y, while b has no other neighbours. The
figure on the right-hand side can be symmetrically interpreted.

x′ y

b a

x x′′ xy′′ y′y

b a

Proof. By inequality (2) either deg(a) = deg(b) = 2, or one of a, b has degree
one. Consider first the case where deg(a) = deg(b) = 2 and let x′ and y′ denote
the remaining neighbours of a and b, respectively. Having both x′ �= y and y′ �= x
is not possible as otherwise by equality (1), cab + cba = 4. Having both x′ = y
and y′ = x gives the first case of the previous theorem.

Therefore, if x′ = y then x < y′ < y as otherwise, {a, b} is suited or cba = 1.
On the other hand, if y′ = x, then x < x′ < y as otherwise, {a, b} is suited or
cba = 1.

Consider now the case where deg(b) = 1. The case where deg(a) = 1 is
symmetric. In addition to x, a has exactly one neighbour x′ strictly to the left
of y as otherwise, cba �= 2. Vertex a has exactly one neighbour x′′ strictly to
the right of y as otherwise, either the pair {a, b} is suited or cab > 1. Thus in
addition to x, x′ and x′′, a can only be adjacent to y.

��

Fixed Parameter Algorithms 341

6 A Reduction Rule for a 2/1 Pattern

The reduction rule RR2 presented in Section 3 resolves the situation described
in the first case of Theorem 3. Unfortunately, the second case of Theorem 3 does
not admit a similar simple resolution. Let us now reconsider the 2/1 patterns
identified in Theorem 4. The second kind of the pattern described in that theo-
rem is in a sense similar to (but more complicated than) the second pattern of
Theorem 3 and hence admits no deterministic solution.

Consider the first case in Theorem 4 with a having a neighbour distinct from
x and y. Let I denote any drawing where b < a and let II denote the drawing
obtained from drawing I by swapping a and b. Let the total number of crossings
in I and II be denoted by cI and cII respectively.

Consider the following figure and tables.

TI A1 A2 A3 TII A1 A2 A3

X1 0 2 4 X1 0 2 4
X2 0 1 2 X2 0 1 2
X3 2 2 2 X3 2 2 2
X4 2 2 1 X4 2 1 1
X5 3 3 1 X5 3 1 1
X6 3 2 0 X6 3 1 0
X7 4 2 0 X7 4 2 0

These tables read as follows: if there are mij edges connecting vertices from
Xi with vertices from Aj , then there are Tx(Xi, Aj)mij crossings between these
mij edges and the edges shown in the above sketches for case x ∈ {I, II}. It is
clear that the columns labelled A1 and A3 are identical in both tables: swapping
a and b can only affect the relative order of vertices in A2 compared to a and b.
The boxed entries show the only differences between the tables. It follows that

cI − cII = cba − cab + m42 + 2m52 + m62 > 0,

since m42 + 2m52 + m62 ≥ 0 and cba − cab = 1. This implies that whenever this
situation from Theorem 4 arises, any optimal drawing shows a < b.

The first case in Theorem 4 where b has a neighbour distinct from x and y
is symmetric; the same analysis applies. This justifies the next reduction rule:
RR3: In the situations described in the first case of Theorem 4, always let a < b.

Since in every optimal drawing all the pairs of this type appear in their
“cheaper ordering”, we apply this reduction rule at the very beginning of our
algorithm, that is we add this rule to the kernelization as shown in Algor. 1.

342 V. Dujmović, H. Fernau, and M. Kaufmann

Having this reduction rule is instrumental in bounding the size of the search
tree, as will become clear from the two lemmas in the next section.

7 The Algorithm for the OSCM Problem

We are now ready to present the parameterized algorithm we suggest for OSCM:

Algorithm 2 (A parameterized algorithm for OSCM).

- kernelize
In a node of a search tree with instance (P , k′) do

0: if k′ < 0 return NO.
1: Apply RRLO1, RRLO2 and RRlarge exhaustively.
2: if in P there is an incomparable i/j pattern {a,b} such that i + j ≥ 4
branch on a < b and b < a; update P and k′ accordingly

3: else if in P there is a dependent 2/1 pattern {a,b}
branch on a < b and b < a; update P and k′ accordingly
4: else
//the remaining 2/1 patterns are independent; thus, RRLO2 applies
resolve all remaining 1/1 patterns arbitrarily
update P and k′ accordingly; if k′ < 0 return NO else YES.

The correctness of this algorithm is clear from the analysis presented in
the previous sections. What remains is to analyse the branching vectors of the
internal nodes in the search tree associated with the algorithm. As required by
the analysis presented in Section 3, we now show that the branching vector
(b1, b2) in each internal node has b1 + b2 ≥ 4 and b1, b2 > 0.

Lemma 3 (Main Lemma). Let {a, b} be a pair of dependent vertices forming
2/1 pattern in step 3 of the algorithm. Then {a, b} is a transitive pair.

Proof. Since {a, b} is dependent in P , there must be a vertex c such that {a, c}
or {b, c} are incomparable in P . It suffices to show that one of these two pairs are
comparable in P . In the step 3 of the algorithm, the only remaining incomparable
pairs are 1/1 patterns of the second type in Theorem 3 and 2/1 patterns of the
second type in Theorem 4. Therefore, let without loss of generality deg(a) = 3
(or deg(a) = 4) and deg(b) = 1. If deg(c) ≥ 2 then by the inequality (2),
cac + cca ≥ 4 and thus the ordering of {a, c} is settled either by RR1 or by the
step 2 of the algorithm. Therefore, deg(c) = 1. In that case, the pair {b, c} forms
a 0/i pattern and its ordering is settled by either RR1 or RR2. ��

A direct consequence of this lemma is the following.

Lemma 4. The branching vector (b1, b2) in each internal node of the search tree
has b1 + b2 ≥ 4 and b1, b2 > 0.

Fixed Parameter Algorithms 343

Proof. Based on the reduction rules RR1 and RR2, in each node of a search tree
all the incomparable (and dependent) patterns i/j have i > 0 and j > 0, thus
in each node b1, b2 > 0. Furthermore, all the nodes branched in the step 2, have
i + j ≥ 4 and thus have b1 + b2 ≥ 4. The remaining nodes are branched in step
3. Each such node branches on a dependent 2/1 pattern {a, b}. By the previous
lemma, committing either a < b or b < a determines, without loss of generality,
the ordering of a pair {a, c}. Having been incomparable at step 3 initially, the
pair {a, c} has cac, cca ≥ 1. Therefore, we have b1 + b2 ≥ 4 in this case, too. ��

8 Conclusions

In this paper, we present a new search tree based parameterized algorithm for
the k-OSCM problem. Due to possible rekernelizations [9], we may deduce:

Theorem 5. The problem of k-OSCM can be solved in time O(1.4656k + kn2).

It remains to be determined whether further progress is possible, especially in
further lowering the base of the exponent in the running time of the search tree
algorithm. Our present case analysis shows at two places a branching behaviour
which matches the upper bound stated in the previous theorem, namely when
branching at 3/1 and at 2/1 patterns . A detailed analysis of 3/1 patterns may
be worthwhile, but will probably be very tedious, requiring considerations of all
the possible combinations.

Let us finally remark that even with the possibly more difficult problem k-
PWCO, we are able to derive a search tree algorithm with a better branching
behaviour than Dujmović and Whitesides did for k-OSCM. Since the result is
of certain interest on its own, we will state it in the following.

Theorem 6. k-PWCO can be solved in time O(1.5175k + kn2).

In fact, the worst case branching vector in our algorithm is (2, 4, 4, 4).

Acknowledgments. We are grateful for hints of F. Rosamond, P. Shaw and
M. Suderman on draft versions of this paper.

References

1. Di Battista, G., Eades P., Tamassia R. and I. G. Tollis, Graph Drawing: Algorithms
for the Visualization of Graphs, Prentice Hall, 1999.

2. R. Downey and M. Fellows. Parameterized Complexity, Springer, 1999.
3. V. Dujmović, M. Fellows, M. Hallet, M. Kitching, G. Liotta, C. McCartin, N.

Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides,and D. Wood,
An efficient fixed parameter approach to two-layer planarization. In P. Mutzel and
M. Jünger, eds., Graph Drawing GD’01, LNCS 2265, pages 1-15. Springer, 2001.

4. V. Dujmović, M. Fellows, M. Hallet, M. Kitching, G. Liotta, C. McCartin, N.
Nishimura, P. Ragde, F. Rosemand, M. Suderman, S. Whitesides,and D. Wood,
On the parameterized complexity of layered graph drawing, In F. Meyer auf der
Heide, ed., European Symposium on Algorithms ESA’01, LNCS 2161, pages 488–
499. Springer, 2001.

344 V. Dujmović, H. Fernau, and M. Kaufmann

5. V. Dujmović and S. Whitesides. An efficient fixed parameter tractable algorithm
for 1-sided crossing minimization. In M. T. Goodrich and S. G. Kobourov, eds.,
Graph Drawing GD’02, LNCS 2528, pages 118–129. Springer, 2002.

6. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11:379–403, 1994.

7. M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: performance
of exact and heuristic algorithms. J. Graph Algorithms Appl., 1:1–25, 1997.

8. X. Munoz, W. Unger, and I. Vrto, One sided crossing minimization is NP-hard for
sparse graphs. In P. Mutzel and M. Jünger, eds., Graph Drawing GD’01, LNCS
2265, pages 115–123. Springer, 2001.

9. R. Niedermeier and P. Rossmanith. A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters, 73:125–129, 2000.

10. Sugiyama K., S. Tagawa and M. Toda. Methods for visual understanding of hier-
archical system structures, IEEE Transactions on Systems, Man and Cybernetics,
11:109-125, 1981.

	Introduction and Problem Definition
	Basics
	Getting a Small Kernel
	A General Overview of the Search Tree Algorithm
	Some Structural Properties of 2/1 and 1/1 Patterns
	A Reduction Rule for a 2/1 Pattern
	The Algorithm for the OSCM Problem
	Conclusions

