
Experiments with the Fixed-Parameter
Approach for Two-Layer Planarization

Matthew Suderman and Sue Whitesides�

School of Computer Science, McGill University
3480 University Street, Room 318

Montreal, Quebec, H3A 2A7 CANADA
{msuder,sue}@cs.mcgill.ca

Abstract. We present computational results of an implementation
based on the fixed parameter tractability (FPT) approach for biplanariz-
ing graphs. These results show that the implementation can efficiently
minimum biplanarizing sets containing up to about 18 edges, thus mak-
ing it comparable to previous integer linear programming approaches.
We show how our implementation slightly improves the theoretical run-

ning time to O(6
bpr(G) + |G|). Finally, we explain how our experimental

work predicts how performance on sparse graphs may be improved.

1 Introduction

A layered drawing of a graph G is a 2-dimensional drawing of G in which each
vertex is placed on one of several parallel lines called layers, and each edge is
drawn as a straight line between its end-vertices. In this paper, we also require
that the end-vertices of each edge lie on different layers. Layered graph draw-
ings [16] have applications in visualization [1], DNA mapping [17], and VLSI
layout [11]. In this paper, we consider 2-layer drawings which are of fundamen-
tal importance in the “Sugiyama” approach to multi-layer graph drawing [14].

One of the most studied criteria for obtaining “good” drawings of graphs is
to minimize the number of edge crossings in the drawing. For 2-layer drawings,
the minimum number of crossings is called the bipartite crossing number of a
graph. Unfortunately, the 2-Layer Crossing Minimization problem, of de-
ciding whether or not the bipartite crossing number of a given graph is at most
a given constant k ≥ 0, is NP-Hard [6]. Furthermore, in practice, exact solutions
are practical for up to only 15 vertices per layer, and heuristics are extremely
inaccurate for sparse graphs [8].

Some recent experimental evidence suggests that, reducing the number of
edges creating crossings produces “better” drawings in some cases than mini-
mizing the number of crossings [13]. In other words, this motivates a strategy of
removing a minimum number of edges so that the resulting graph can be drawn
without crossings (and then possibly re-inserting the removed edges). A graph is
� Research supported by an NSERC operating grant and an FQRNT scholarship.

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 345–356, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

346 M. Suderman and S. Whitesides

biplanar if it admits a planar 2-layer drawing. A set of edges whose removal from
a graph G makes it biplanar is called a biplanarizing set for G. The biplanarizing
number of a graph G, denoted by bpr(G), is the size of the minimum biplanariz-
ing set for G. Thus, the 2-Layer Planarization problem is: given a graph G

and an integer k ≥ 0, determine whether or not bpr(G) ≤ k. This problem was
first studied by Tomii et al. [15], who showed that it is NP-Complete. Therefore
the optimization problem of finding the biplanarizing number of a graph is NP-
Hard. Interestingly, Mutzel [12,13] reports much better results for integer linear
programming solutions that find the biplanarizing number of a graph than those
that find its bipartite crossing number. Thus, [12, 13] provide two compelling
reasons to study 2-Layer Planarization and its corresponding optimization
problem.

Biplanarity has been studied from the parametric complexity view. A prob-
lem with input size n and parameter k is said to be Fixed-Parameter Tractable,
or in the class FPT, if it can be solved in O(f(k) · nα) time, for some function
f and constant α (see Downey and Fellows [2]). Dujmović et al. [3] describe
such an algorithm for solving the 2-Layer Planarization problem that runs
in time O(k · 6k + |G|).

In this paper, we describe an implementation based on the algorithm of [3].
Our implementation finds a biplanarizing set of size bpr(G). We also present
experimental evidence showing that the FPT approach to biplanarization is of
more than theoretical interest. In particulare, our results show that our imple-
mentation can be used in practice to efficiently find minimum biplanarizing sets
containing up to about 18 edges. Furthermore, we show that its running time
is roughly comparable to the well-studied integer linear programming approach.
We show that our implementation runs in time O(6k+|G|), a slight improvement
on the theoretical bound of [3].

Finally, we predict, on the basis of our experimental results, that a further
variation of our implementation, described in Section 5, will be able to efficiently
planarize sparse graphs with biplanarization numbers much larger than 18.

The rest of the paper is organized as follows. The next section defines several
terms and presents previous work. Section 3 describes our implementation and its
running time. Section 4 presents computational results for our implementation
and compares them to those of Mutzel in [12, 13]. Finally, Section 5 describes a
further variation of our implementation for sparse graphs.

2 Preliminaries

In this paper, each graph G = (V, E) is simple and undirected, but not necessarily
connected. A leaf is a vertex with exactly one neighbor, and we use deg′

G(v) (or
deg′(v) when the context is clear) to denote the number of non-leaf neighbors
of a vertex v with respect to G. Any graph that can be transformed into a path
by removing all its leaves is a caterpillar. This unique path is called the spine
of the caterpillar. The 2-claw is the smallest tree that is not a caterpillar. It

Experiments with the Fixed-Parameter Approach 347

Fig. 1. (a) Caterpillar, (b) Wreath, (c) 2-Claw

consists of a vertex called the root that has three neighbors, and each neighbor
is additionally adjacent to a leaf.

Lemma 1 ([5, 7, 15]). Let G be a graph. The following are equivalent:

1. G is biplanar;
2. G is a forest of caterpillars;
3. G is acyclic and contains no 2-claw; and
4. The graph obtained from G by deleting all leaves is a forest and contains no

vertex with degree three or greater.

Let P = v1 . . . vp be a simple path of length at most two in a graph G. If
deg′

G(v1) ≥ 3, deg′
G(vp) = 1, and the remaining vertices vi have deg′

G(vi) = 2,
then the subgraph induced by the vertices of P and the neighbors of vertices
v2, . . . , vp is called a pendant caterpillar of G. This pendant caterpillar is said
to be connected to the graph at v1, its connection point. If, instead, we have
deg′

G(vp) ≥ 3, then the subgraph induced by the vertices of P and the neighbors
of vertices v2, . . . , vp−1 is called an internal caterpillar of G. This internal cater-
pillar is said to be connected to G at vertices v1 and vp, its connection points. If
an internal caterpillar is a path, then it is also called an internal path.

Any graph that can be transformed into a cycle C by removing all of its
leaves is called a wreath. The edges of C are called the cycle edges and C is
called the wreath cycle of the wreath. A wreath subgraph is called a pendant
wreath if exactly one of the vertices v has a neighbor outside of the wreath, and
v is on the wreath cycle1. The wreath subgraph is said to be connected to the
rest of the graph at v, its connection point. A pendant triangle is a pendant
wreath composed of three edges, all cycle edges. A middle edge of a pendant
triangle is any edge whose end-vertices have degree equal to 2.

3 Algorithm Implementation

We begin by recalling the following lemma whose proof we include in order to
describe our implementation.
1 Note: a wreath component may be regarded as a pendant wreath by thinking of one

of its leaves as outside the wreath subgraph.

348 M. Suderman and S. Whitesides

Lemma 2 ([3]). If there exists a vertex v in a graph G such that deg′
G(v) ≥ 3,

then v belongs to a 2-claw or a 3- or 4-cycle in G.

Proof. Let w1, w2, w3 be three distinct non-leaf neighbors of v, and let x1, x2, x3
be neighbors of w1, w2, w3, respectively, that are distinct from v. If xi = wj for
some i and j, then vwjwi is a 3-cycle. On the other hand, if xi �= wj for each i
and j but xi = xj for some i �= j, then vwixiwj is a 4-cycle. If neither of these
is true, then vertices v, w1, w2, w3, x1, x2, x3 form a 2-claw rooted at v. ��
We call a 2-claw or a 3- or 4-cycle in a graph a forbidden structure.

One approach for producing FPT algorithms is the method of bounded search
trees [2]. The basic idea is to exhaustively search for a solution to the problem
in a tree whose size is bounded by a function of the problem parameter. For
intuition, we give a basic bounded search tree algorithm for solving the 2-Layer
Planarization problem. Both our implementation and the algorithm of [3]
elaborate on this basic idea.

We construct the search tree recursively, beginning at the root. To each node,
we associate a subgraph H of G; for the root node, we have H = G. For each non-
leaf node, we also associate a forbidden structure S in H. By Lemma 1, at least
one edge in S is in every biplanarizing set of H; consequently, the current node
has |S| children, one corresponding to each edge in S. The subgraph associated
with each child is obtained by removing an edge in S from H. A node is a leaf
if its subgraph H is obtained from G by removing more than k edges, or does
not contain any forbidden structures. In the second case, we have, by Lemma
2, that every vertex v in H has deg′

H(v) ≤ 2; in other words, each connected
component in H is either a caterpillar or a wreath. By Lemma 1, any minimum
biplanarizing set H contains exactly one cycle edge from each wreath in H.
Thus, a leaf node represents a yes-instance to the problem if its subgraph H
does not contain any forbidden structures, and the sum of the edges removed
from H to obtain G together with the number of wreaths in H is at most k. The
corresponding biplanarizing set is simply the edges removed from G to obtain
H together with one cycle edge from each wreath in H.

The resulting tree has at most O(6k) nodes because, first of all, each node
has at most 6 children, and secondly, each non-root node corresponds to an edge
removal so the height of the tree is at most k. Constructing this tree naively re-
quires O(|G|) time at each node; therefore, we have an O(6k · |G|) time algorithm
for solving the 2-Layer Planarization problem.

Although this is enough to prove that the 2-Layer Planarization problem
is Fixed-Parameter Tractable, the running time can be further improved. In fact,
an O(k · 6k + |G|) time algorithm is given in [3], roughly by reducing the graph
to a “kernel” of size O(k) so that at most O(k) time is needed at each node.

In looking for a convenient implementation, we discovered that we could
further reduce the running time to O(6k + |G|). We obtained this reduction by
finding a way to determine, at each search tree node, whether or not its subgraph
H contains a forbidden structure, and, if so, to exhibit one such structure, all in
constant time. In addition, instead of handling component wreaths only at leaf
nodes, we handle them as soon they are created by an edge-removal.

Experiments with the Fixed-Parameter Approach 349

It is possible to find a forbidden structure in constant time by maintaining
the list F of vertices with deg′ ≥ 3, and, for each vertex v, the list f(v) of edges
incident on v that correspond to the non-leaf neighbors of v. We construct a
forbidden structure in constant time as in the proof of Lemma 2. We first select
the first vertex v in F , then the first three edges (v, w1), (v, w2) and (v, w3) in
f(v), and, for each wi, an incident edge other than (v, wi). If these six edges
induce a cycle, then we have found either a 3- or 4-cycle; otherwise, we have a
2-claw rooted at v. If F is empty, then, we are at a leaf node in the tree.

The following lemmas show that we can update these lists after each edge
removal in constant time. If (v, w) is an edge, then nl(v, w) denotes the other
neighbor w′ �= w of v if deg(v) = 2; otherwise, nl(v, w) = v.

Lemma 3. Let e = (v0, v1) be an edge in a graph G. Let F be the set of vertices
in G with deg′ ≥ 3, and let F ′ the set of vertices in G \ e with deg′ ≥ 3. Then:

F ′ ⊆ F ⊆ F ′ ∪ {nl(v0, v1),nl(v1, v0)}.

Proof. After removing edge e, only vertices whose deg′ decreases to 2 are removed
from F . In other words, these vertices either lose a neighbor or one of their
neighbors becomes a leaf. Thus, the value of deg′ may change only for v0, v1,
nl(v0, v1) and nl(v1, v0) when e is removed. If we have v0 �= nl(v0, v1), then
deg(v0) = 2 so v0 �∈ F or F ′. Symmetric comments apply to v1. ��

The proof of the next lemma is similar so it is omitted.

Lemma 4. Let e = (v0, v1) be an edge in a graph G, and let f be the mapping
from each vertex in G to the set of incident edges corresponding to its non-leaf
neighbors. Similarly, let f ′ be the mapping from each vertex in G to the set of
incident edges corresponding to its non-leaf neighbors in G \ e.

Then, f ′(w) = f(w) for each vertex w in E(G)\{v0,nl(v0, v1), v1,nl(v1, v0)},
and, otherwise:

– f(v0) ⊆ f ′(v0) ∪ {(v0, v1)},
– f(nl(v0, v1)) ⊆ f ′(nl(v0, v1)) ∪ {(v0,nl(v0, v1))},
– f(v1) ⊆ f ′(v1) ∪ {(v0, v1)}, and
– f(nl(v1, v0)) ⊆ f ′(nl(v1, v0)) ∪ {(v1,nl(v1, v0))}.

As mentioned earlier, we handle component wreaths at each node in the
tree rather than leaving them for the leaf nodes. Furthermore, we detect and
planarize each wreath in constant time. As a result, we cannot expect to detect
a component wreath by traversing each of its member vertices. Instead, we rely
on pointers called cheaters. Cheaters link the first and last vertices on the spine
of every internal caterpillar. For convenience, we will think of a pendant wreath
as an internal caterpillar with one connection point.

Suppose that the subgraph H of a node contains no component wreaths but
that, for some edge e = (v0, v1) in H, H \ e contains at least one. By Lemma 3,
v′
0 = nl(v0, v1) or v′

1 = nl(v1, v0) belongs to the wreath, and, for each v′
i in the

wreath, we have deg′
H\e(v

′
i) = 2 and deg′

H(v′
i) > 2. All vertices in a component

350 M. Suderman and S. Whitesides

wreath have deg′ ≤ 2, so, of all vertices in the wreath subgraph in H, only v′
0 and

v′
1 have deg′

H > 3. Thus, the wreath subgraph in H is composed of zero or more
internal caterpillars and possibly vertices v′

0 and v′
1 acting as connection points

for these internal caterpillars. Thus, removing edge e creates a component wreath
if and only if some v′

i is the single connection point for an internal caterpillar in H
and deg′

H\e(v
′
i) = 2, or both v′

0 and v′
1 are the connection points for two internal

caterpillars and deg′
H\e(v

′
0) = deg′

H\e(v
′
1) = 2. In both cases, we planarize the

wreath by removing any edge in f(v′
i).

Having handled component wreaths using cheaters, we now show how to
efficiently update cheaters whenever an edge is removed. If a new internal cater-
pillar is created by an edge removal, then the edge removal decreases the deg′ of
a vertex v down to two. If v is a connection point for two internal caterpillars P1
and P2 before the edge removal, then the new internal caterpillar is the concate-
nation of P1 and P2. If v is a connection point for only one internal caterpillar
P , then the new internal caterpillar is the concatentation of P with v and its
leaf neighbors. Otherwise, the new internal caterpillar is composed only of v and
its leaf neighbors. In each of these three cases, it is a simple matter to update
the cheaters in constant time after an edge removal using existing cheaters.

Thus, we have shown how to explore the bounded search tree in O(6k + |G|)
time. The resulting algorithm Bounded Search Tree for solving 2-Layer Pla-
narization is given below. We assume that set F and the map f are correctly
initialized for the graph G in O(|G|) time before the algorithm is executed.

Algorithm Bounded Search Tree (graph G; vertex-set F; map f; integer k)

1. if F = ∅ then return YES;
2. else if k = 0 then return NO;
3. else

a) S ← a 2-claw, 3-cycle or 4-cycle in G using F and f ;
b) for each edge (x, y) ∈ S do

i. Remove (x, y) from G and planarize any resulting component
wreaths while updating F , f and the cheaters. Let P be the set
of removed edges;

ii. if Bounded Search Tree(k − |P |) then return YES;
iii. else

Add edges in P back to G and undo the resulting changes to
F , f and the cheaters;

4. return NO;

We have following result:

Lemma 5. Given a graph G and integer k, algorithm Bounded Search Tree de-
termines if bpr (G) ≤ k in O(6k + |G|) time.

We use the algorithm Bounded Search Tree to find the minimum biplanarizing
set for a graph by repeatedly executing Bounded Search Tree, intially with some
lower bound value for k, and then increasing k until the algorithm returns YES.

Experiments with the Fixed-Parameter Approach 351

Thus, we can find the minimum biplanarizing set for a graph in O(60 + 61 +

. . . + 6
bpr(G) + |G|) = O(6

bpr(G) + |G|) time. Variable k is initially set to either
Φ(G)/2 or |E| − |V |+ 1. As defined in [3], the potential function Φ(G) denotes
the following sum: ∑

v∈V (G)

max{deg′(v)− 2, 0}.

Lemma 6 ([3]). For every graph G, bpr(G) ≥ Φ(G)
2 .

The value of bpr(G) equals |E| − |V |+ 1 whenever G has a spanning caterpillar.
This is best possible for bpr(G) for any graph G. Thus, we obtain:

Theorem 7. Given a graph G, there exists an algorithm that finds a minimum

biplanarizing set for G in O(6
bpr(G) + |G|) time.

In our implementation, we include three other improvements to the algo-
rithm Bounded Search Tree described above. We obtain the first improvement
by slightly generalizing the method for planarizing component wreaths at each
search tree node, which we described above, to planarize all pendant wreaths as
well. The generalization can be applied in constant time after each edge removal.

The second improvement is based on the observation that, if a vertex is the
root of more than one 2-claw, then planarizing these 2-claws one-at-a-time could
result in exploring unnecessary branches of the search tree. For example, if a
vertex v has exactly four non-leaf neighbors, and each neighbor has degree equal
to two, then v is the root of

(4
3

)
2-claws. The original algorithm would typically

choose one of these 2-claws, branch on it, and then, on each branch, branch on
the 2-claw remaining at v. This results in trying to planarize the 2-claws rooted
at v in 36 different ways. Some of these branches are redundant because there
are exactly 24 different ways to planarize these 2-claws with two edge removals.
Avoiding these redundant branches could lead to a substantially shorter running
time when many vertices in the graph are the roots of more than one 2-claw. In
fact, we end up with a branching factor of

√
(24) < 5 rather than 6.

The redundant branches are due to deleting the same set of edges but in a
different order. For example, if the children of node N correspond to the edges
e1, . . . , e6 of a 2-claw, then the search subtree corresponding to removing e1 may
explore the possibility of also removing edge e2, and, similarly, the search subtree
corresponding to removing e2 may explore the possibility of also removing edge
e1. Entirely exploring both subtrees would be redundant because, if the graph
remaining at node N could have been planarized by removing both e1 and e2,
then that solution node appears in both subtrees. Thus, it would be more efficient
to completely explore the subtree corresponding to e1, and then explore only
parts of the subtree corresponding to e2 that do not involve removing e1. We
avoid these redundant parts by marking e1 as tried after we have explored its
subtree and failed to find a solution. If we fail to find a solution at a descendant
of node N , then, just before backtracking from N , we remove the mark on e1. In
general, then, we mark an edge as tried as soon as we have explored its subtree

352 M. Suderman and S. Whitesides

and then remove that mark whenever we backtrack away from its parent node.
The extra overhead is clearly constant per node so the resulting algorithm runs

in O(6
bpr(G) + |G|) time.

The third improvement is based on the observation that we can avoid ex-
ploring subtrees that correspond to removing a candidate edge from the graph.
As defined in [4], an edge is called a candidate for removal if it is the middle
edge of an internal 3-path or triangle, or it does not belong to an internal 3-path
or triangle and one end-vertex has deg′ > 2 and the other has deg > 1. We
use K to denote the set of candidate edges, so a canonical biplanarizing set is a
biplanarizing set that is a subset of K. The following lemma shows that there is
always a minimum biplanarizing set that is canonical.

Lemma 8 ([4]). If T is a biplanarizing set for a graph G, then there exists a
canonical biplanarizing set T ∗ of G such that |T ∗| ≤ |T |.
One can easily test whether or not an edge is a candidate for removal in constant

time, so the algorithm still runs in O(6
bpr(G) + |G|) time.

4 Computational Results

We implemented the algorithm described in the previous section using the Java
programming language. We compiled the program using the byte-code compiler
from the Java SDK version 1.4.1 from Sun Microsystems. We ran the experiments
using their byte-code interpreter on a 1004.542 MHz Pentium III computer with
901156 Kb RAM running Debian Linux version 2.4.18. Actual running times
depend on many factors such as the speed and architecture of the computer,
other processes running in the background, the quality of the implementation,
and the choice of implementation language (Java programs are generally 2-3
times slower than similar C++ programs); therefore, we also recorded the sizes
of the search trees explored. These values depend only on the input graph and
the algorithm. We include the running times in our results only to give a rough
idea of how long the implementation takes to planarize a graph.

We applied our implementation to the bipartite graphs from the Stanford
Graphbase [10] that were used in the experiments of Mutzel [12,13]. The results
of our experiments are shown alongside the results of Mutzel [13] in Table 1.
Each row in the table corresponds to the average values from applying the al-
gorithm to 100 different graphs. From Mutzel’s ILP experiments, we included
both the running time and the average guarantee of the solution value (Gar), i.e.
UpBound−Sol

UpBound ×100 where Sol denotes the number of edges in a biplanar subgraph
of G having the most edges among the biplanar subgraphs found, and UpBound
denotes the value determined by the linear programming relaxation when the
time limit of 300 seconds expired. It turns out that for the graphs investigated,
the initial value for k, max(φ(G)

2 , |E|−|V |+1), is quite close to bpr(G). For denser
graphs we would expect this value to be closer to bpr(G) than for sparser graphs
because of the higher probability of have a spanning caterpillar. However, on

Experiments with the Fixed-Parameter Approach 353

Table 1. Results for bipartite graphs with |Vi| vertices per bipartition and |E| edges.

|Vi| |E|
20 20
20 25
20 30
20 35
20 40
20 45
20 50
20 55
20 60
20 65
20 70
20 75
20 80
20 85
20 90
20 95
20 100
20 40
30 60
40 80
50 100

Mutzel ILP [13]
Gar Time (≤ 300s)
0.00 0
0.00 0
0.00 0
0.00 1
0.00 6
0.03 26
0.67 100
0.53 81
0.37 56
0.32 54
0.13 26
0.13 22
0.03 12
0.10 20
0.02 8
0.00 4
0.00 4
0.00 6
0.13 49
0.55 150
1.45 253

FPT

Time (≤ 600s) Steps bpr Success
0 5 1 100
0 8 1.5 100
0 25 3 100
0 90 4.9 100
0 595 7.7 100
0 1,829 10.7 100
2 53,416 14.3 100
41 1,767,872 18.2 96
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
0 495 7.4 100
1 10,559 11.3 100
9 243,760 15.6 100
43 1,281,694 19.4 97

average the biplanarizing number was at most one more than our initial value
for k. Thus, even our intial lower bound which could be calculated in O(|G|)
time had a good average guarantee of the solution value.

It would not be very meaningful to directly compare our running times to
those of Mutzel because of environment differences. More specifically, they were
originally reported in 1996 in [12] so the computers used were much slower than
the ones we used, and the implementation language was C++ using ABACUS [9].

It is, however, meaningful to compare the shapes of the |E| versus running
time graphs. In the first 17 rows of Table 1, we see that the FPT implementation
is quite efficient up to |E| = 55, finding exact solutions to all input graphs.
After |E| = 55, the FPT implementation was able to obtain exact solutions
to only a few input graphs for maximum time 10 minutes per graph. The ILP
implementation, on the other hand, demonstrates poorest performance at |E| =
50. However, after |E| = 50, it improves as |E| approaches 100.

Thus, we see that these two different approaches may be complimentary. It
appears that, whereas FPT approaches tend to be efficient on sparse graphs, ILP
approaches tend to be efficient on dense graphs. This is because FPT algorithms
have running times like O(f(k) ·nα); therefore, they will be efficient when bpr(G)
is small, that is, the graph is sparse. ILP algorithms using branch-and-cut, on the
other hand, find an optimal solution by repeatedly finding approximate solutions

354 M. Suderman and S. Whitesides

that close in on an optimal solution. For planarization, this means that an ILP
algorithm begins with a biplanarizing set of size between bpr(G) and |E|−|V |+1,
and then find increasingly smaller biplanarizing sets until one of size bpr(G) is
found. For dense graphs, the probability that bpr(G) = |E| − |V |+ 1 is high, so
the ILP algorithm begins with a solution close to the optimal.

Designing and implementing FPT solutions is still quite new as compared
to integer linear programming, especially for graph drawing algorithms. Conse-
quently, further work on FPT algorithms is almost sure to yield improvements.
In the next section, we describe some future possibilities.

5 Future Work

One way that we might improve the performance of our implementation on
larger sparse graphs is to integrate divide-and-conquer into the algorithm. For
example, planarizing two subgraphs each with bpr= k as a single graph could
use up to O(62k + |G|) = O(36k + |G|) time. If, on the other hand, it is possible
to planarize them separately, then we would use O(2 · 6k + |G|) time. Clearly,
the second option is preferrable. In sparse graphs, we would expect this to be
often possible.

Certainly, if a graph is disconnected, then the minimum biplanarizing set
for the whole graph is simply the union of the minimum biplanarizing sets for
the connected components. We can, however, do slightly better than this by
dividing the graph into p-components. A p-component of a graph is a maximal
connected subgraph consisting of biconnected components that are connected
by internal paths of length at most three, and the internal caterpillars that
connect this subgraph to other p-components. Notice that two p-components
are not necessarly disjoint since they may share a single internal caterpillar. The
following lemma shows that each p-component can be planarized separately. The
proof is not trivial but omitted.

Lemma 9. If Hi, 1 ≤ i ≤ p, are the p-components of a graph G, and Mi are
their minimum canonical biplanarizing sets, then

⋃
Mi is a minimum canonical

biplanarizing set for G and Mi ∩Mj = ∅ for each i �= j.

Lemma 9 suggests a divide-and-conquer variation of the algorithm: divide the
graph into p-components, and then planarize each p-component individually.
In fact, we are able to do better than this by planarizing in such a way as to
break a larger p-component into smaller p-components, and then to planarize
each of them. One strategy for breaking up a p-component is to branch on
forbidden structures containing cut vertices, which we would expect to find in
sparse graphs.

A slight complication of this variation of the algorithm is that, when pla-
narizing a p-component, we are using a bounded search tree so we have bounded
the number of edge removals by some parameter k. Thus, if we break the p-
component C into smaller child p-components, then we must somehow divide
the parameter k for C into smaller parameters for each child p-component. The

Experiments with the Fixed-Parameter Approach 355

problem is that we do not know what parameter to assign each child without
knowing the size of its minimum biplanarizing set. We solve this problem by
initializing the parameter for each child to some lower bound. We re-apply the
algorithm to the child, increasing its parameter until we find its minimum bipla-
narizing set. If the sum of the parameters for the children ever becomes greater
than the parameter for their parent, then we realize that the way we divided
the parent p-component into smaller p-components will not yield a biplanarizing
set matching the parent’s parameter. In response, we immediately backtrack to
the point in the search tree where we disconnected the parent p-component and
continue searching from there.

The extra work of computing the p-components and determining if the cur-
rent p-component C has been broken into smaller p-components can all be done
in O(bpr(C)) time. To compute sub-p-components, we simply apply a modifica-
tion of the algorithm fory finding biconnected components in a graph. We apply
the algorithm to the at most O(bpr(C)) vertices having three or more non-leaf
neighbors, skipping over internal caterpillars during graph traversal using the
cheater pointers described in the previous section.

Straight-forward but tedious analysis shows that the running time of this
variation of the algorithm runs in O(6k + |G|) time. It remains to be seen how
well this approach will work in practice. We expect that the running time of the
algorithm will differ polynomially with respect the size of sparse graphs with
uniform density.

6 Conclusion

We have described the implementation and computational results of an algo-
rithm inspired by parameterized complexity. We have shown that for computing
the minimum biplanarizing sets, this algorithm has both practical as well as the-
oretical value. Furthermore, we have presented experimental evidence showing
that it is roughly comparable with the well-studied field of linear programming
for finding practical solutions to NP-hard problems. Finally, we have described
one possible way to dramatically improve on the experimental results presented
in this paper.

In the future, we would plan to obtain computational results from the al-
gorithm based on p-components. We plan to perform further experiments with
graphs from sources other than the Stanford Graphbase, such as from DNA-
mapping applications.

One of the limitations of our implementation is that it obtains only exact
solutions. We plan to investigate using FPT algorithms for finding approximation
solutions.

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall (1999)

356 M. Suderman and S. Whitesides

2. Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer-Verlag (1999)
3. Dujmović, V., Fellows, M.R., Hallett, M.T., Kitching, M., Liotta, G., McCartin,

C., Nishimura, N., Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S.,
Wood, D.R.: A fixed-parameter approach to two-layer planarization. In Mutzel,
P., Jünger, M., Leipert, S., eds.: Graph Drawing, 9th International Symposium
(GD 2001). Volume 2265 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 1–15

4. Dujmović, V., Fellows, M.R., Hallett, M.T., Kitching, M., Liotta, G., McCartin, C.,
Nishimura, N., Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S., Wood,
D.R.: A fixed-parameter approach to two-layer planarization, manuscript (2003)

5. Eades, P., McKay, B., Wormald, N.: On an edge crossing problem. In: Proceedings
of the 9th Australian Computer Science Conference, Australian National University
(1986) 327–334

6. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal of
Algebraic Discrete Methods 4 (1983) 312–316

7. Harary, F., Schwenk, A.: A new crossing number for bipartite graphs. Utilitas
Mathematica 1 (1972) 203–209

8. Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: performance of
exact and heuristic algorithms. Journal of Graph Algorithms and Applications 1
(1997) 1–25

9. Jünger, M., Thienel, S.: The ABACUS-system for branch and cut and price al-
gorithms in integer programming and combinatorial optimization. In: Software–
Practice and Experience. Volume 30. (2000) 1324–1352

10. Knuth, D.: The Stanford GraphBase: A Platform for Combinatorial Computing.
ACM Press, Addison-Wesley Publishing Company (1993)

11. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley
(1990)

12. Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs.
In North, S.C., ed.: Graph Drawing, Symposium on Graph Drawing (GD ’96).
Volume 1190 of Lecture Notes in Computer Science., Springer-Verlag (1996) 318–
333

13. Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs.
SIAM Journal of Optimization 11 (2001) 1065–1080

14. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Transactions on Systems, Man, and Cybernetics
11 (1981) 109–125

15. Tomii, N., Kambayashi, Y., Yajima, S.: On planarization algorithms of 2-level
graphs. Papers of tech. group on elect. comp., IECEJ EC77-38 (1977) 1–12

16. Warfield, J.N.: Crossing theory and hierarchy mapping. IEEE Transactions on
Systems, Man, and Cybernetics 7 (1977) 502–523

17. Waterman, M.S., Griggs, J.R.: Interval graphs and maps of DNA. Bulletin of
Mathematical Biology 48 (1986) 189–195

	Introduction
	Preliminaries
	Algorithm Implementation
	Computational Results
	Future Work
	Conclusion

