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Abstract. In a graph, a cluster is a set of vertices, and two clusters are
said to be non-intersecting if they are disjoint or one of them is contained
in the other. A clustered graph is a graph with a set of non-intersecting
clusters. In this paper, we assume that the graph is planar, each non leaf
cluster has exactly two child clusters in the tree representation of non-
intersecting clusters, and each cluster induces a biconnected subgraph.
Then we show that such a clustered graph admits a drawing in the plane
such that (i) edges are drawn as straight line segments with no crossing
between two edges, and (ii) the boundary of the biconnected subgraph
induced by each cluster is convex polygon.

1 Introduction

A clustered graph C = (G,T) consists of an undirected graph G = (V, E) and a
rooted tree T = (V, £) such that each node ¢ € V, called a cluster, corresponds
to a subset of V, denoted by V(c). For a cluster ¢, Ch(c) denotes the set of
children of ¢, and parent(c) denotes the parent of ¢ if ¢ is not the root. We
assume that, for each non-leaf node c, it holds V(c) = Uxecon(e)V(¢'). (Notice
that a leaf cluster ¢ may contain more than one vertex.) The subgraph of G
induced by V() for a cluster ¢ is denoted by G(c).

A clustered graph can be used to draw graphs with large size such as WWW
connection graphs or VLSI schematics. The vertex set of such a graph is clus-
tered to display a part of the graph [4]. On the other hand, there are already
clustered graphs in applications such as statistics (e.g. [9]) and linguistics (e.g.,
[2]). Drawing clustered graphs in an understandable way is important to visu-
alize these structures. See for recent developments in graph drawings. In
this paper, we consider how to draw clustered graphs nicely in the plane.

In a drawing of a clustered graph C' = (G,T), graph G is drawn as points
and curves as usual. For each node ¢ of T, the cluster is drawn as a simple closed
region R, that contains the drawing of G(c), such that:

(1) the regions for all child clusters of ¢ are completely contained in the interior
of R;

(2) the regions for all other clusters are completely contained in the exterior of
Re;
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(3) if there is an edge e between two vertices of V(¢) then the drawing of e is
completely contained in R..

We say that the drawing of edge e and region R have an edge-region crossing
if the drawing of e crosses the boundary of R more than once. A drawing of
a clustered graph is compound planar (c-planar, for short) if there are no edge
crossings or edge-region crossings. If a clustered graph C has a c-planar drawing
then it is called c-planar [8]. Fig.[[{a) shows an example of a c-planar drawing of
a c-planar clustered graph. It is known that, if each cluster induces a connected
subgraph, then testing whether a given clustered graph C has a c-planar drawing
or not can be done in linear time [3]. However, the complexity status of the testing
problem is unknown (see for a recent progress on this issue). In this paper,
we are given a clustered graph equipped with a c-planar drawing.

One of the fundamental questions in planar clustered graph drawing is: does
every c-planar clustered graph admit a planar drawing such that edges are drawn
as straight-line segments and clusters are drawn as convex polygons? The ques-
tion has been solved affirmatively by Eades et al. [5l6l7]. To determine the zy-
coordinates of the vertices in a c-planar graph which has been embedded in the
plane, their method first computes y-coordinates of vertices based on an extended
numbering of the st-numbering, and then determines an adequate xz-coordinate
of each vertex. The idea behind this is that after fixing the y-coordinates of
the vertices any two disjoint clusters are separable by a horizontal line (a line
parallel with the z-axis) no matter how their z-coordinates will be determined;
x-coordinates can be determined so as to draw each edge as a straight line seg-
ment without taking into account the cluster structure any more. As a result,
in the obtained drawing, clusters are arranged in a special way. Fig. [b) shows
an output of their method applied to the clustered graph in Fig. [la). The
characteristic of their drawing may be favorable to some purpose, but is rather
disadvantageous to obtain a drawing in which clusters are required to be packed
compactly in the plane. In this paper, we propose a new way of drawing c-planar
clustered graphs. Our method is based on a divide-and-conquer approach with-
out relaying on any special numbering on vertices, and may produce a drawing
that has no structure biased in a certain direction.

2 Preliminaries

For a c-planar clustered graph C' = (G, T), we assume that the embedding of G
of a c-planar drawing of C' is given, and C' is stored in an O(n) space as follows,
where n denotes the number of vertices in G.

A graph G = (V, E) is represented by a set of adjacency lists L(v) for all
vertices v € V| and in an adjacency list L(v), all the edges incident to v appear
in the same order that they appear around v in clockwise order (that is how
the embedding of G in the drawing is represented). Each edge e = (v,u) is
equipped pointers that indicate the cells for e in the lists L(v) and L(u). Also
we assume that, for two nodes ¢, € T, their least common ancestor, denoted
by LCA(c, '), can be found in O(1) time after an O(n) time preprocessing is
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Fig. 1. Three drawings of a clustered graph C, which has five clusters ¢; =
{'U07 V1, V2, V3, V4, ’U5}, C2 = {Uo,Ul}, C3 = {’Uz7 V3, V4, ’U5}, Cq4 = {U27U3} and ¢; = {U4,U5}
each surrounded by a broken line: (a) a c-planar drawing, (b) a straight line cluster
drawing, and (c) a c-planar convex cluster drawing.

applied to a rooted tree T' = (V, &) [11]. We assume that in a clustered graph
C = (G,T), every non-leaf node of tree T" has at least two children. Hence the
size of T = (V, &) is O(|V| + |€]) = O(n).

Definition 1. For a c-planar clustered graph G = (G, T), a drawing of G that
satisfies the followings is called a c-planar straight line cluster drawing of C.

— Fach vertex is drawn as a point and each edge is drawn as a straight line
segment between two points drawn for its end vertices.

— For each cluster c, let the region R. of ¢ be the convex hull of the points
drawn for the vertices in V(c).

— For each cluster c, the edges in G(c) are drawn in the interior of R., and
the vertices and edges in G — V (¢) are drawn in the exterior of R..

— There are no edge crossings or edge-region crossings.

Storing a region R, for a cluster ¢ in a given drawing may take £2(|V(c)|)
space, and just computing all regions would take £2(n?) space and time (even
though computing the points for the vertices in GG in a c-planar straight line
cluster drawing may be done in linear time). In the above definition, we do not
need explicitly store a data structure for the region R, for each cluster ¢, which
can be obtained by the convex hull of the points drawn for the vertices in V(c).
For example, the region R, for cluster ¢ = {vg, v1,...,v5} is given by the convex
hull with corner points vg, v1, v3, v4.

A clustered graph C = (G, T) is a connected clustered graph if each cluster
induces a connected subgraph of G. Eades et al. [7] proved the following result.

Theorem 1. [7] Let C = (G,T) be a c-planar connected clustered graph.
Then there always exists a c-planar straight line cluster drawing of C, and such
a drawing of C with n vertices can be constructed in O(n) time. O
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Definition 2. For a c-planar clustered graph G = (G, T), a c-planar straight
line clustered drawing of G is called a c-planar convex cluster drawing of C' if
the following holds for each cluster ¢, whose region R, is defined to be the convex
hull of the points drawn for the vertices in V (c).

— The boundary of the embedding of G(c) is a strict convex polygon (i.e., a
convez polygon such that the internal angle at each corner is less than ).

A connected clustered graph C = (G, T) is a biconnected clustered graph if
each cluster with more than two vertices induces a biconnected subgraph of G.
In this paper, we show the next result.

Theorem 2. Let C' = (G, T) be a c-planar biconnected clustered graph such that
T is a binary tree. Then there always exists a c-planar conver cluster drawing of
C, and such a drawing of C with n vertices and n' clusters can be constructed
in O(n +n'log?n’) time. O

The clustered graph in Fig.[(a) is a c-planar biconnected cluster graph, but
the drawing in Fig.[[Ib) is not a convex cluster drawing. Fig.[Il(c) shows a convex
cluster drawing of the c-planar biconnected cluster graph C in Fig. [{a). Note
that in a convex cluster drawing one can indicate the region R, for a particular
cluster ¢ by emphasizing the boundary of G(c) (say, by allocating a different
color to the edges in the boundary), without drawing the boundary of R..

For a clustered graph C = (G,T) in Theorem 2] we introduce some termi-
nology. Fix an embedding of G in a c-planar drawing of C. For each cluster ¢, let
ex(c) denote the set of vertices on the boundary of the outer face of G(¢). When
ex(c) is represented by its members {vy, vo, ..., v, }, we assume that vy, ve, ..., v,
appear in clockwise order along the boundary of c.

Let ¢ be a non-root cluster ¢ with |V (¢)| > 3, and ¢’ and ¢ be its child clusters
of ¢. The set of edges commonly used in the boundaries of G(c) and G(¢’) forms
a single path, and hence the set of edges that are used in the boundary of G(c’)
but not in that of G(c¢) forms a single path, say P.. The set of vertices in P, is
denoted by A(c¢’). The end vertices of P. are denoted by ¢1(¢’) and ¢2(c’), where
we assume that P, is a path that goes from ¢;(c¢’) to ¢2(¢’) in clockwise order
along the boundary of G(¢’). We call these vertices ¢ (¢’) and go(c) joint vertices
of ¢’. The edge set {(v,w) € Elv € A(¢/),w € A(¢")} is denoted by A(c) (see
Fig. ).

In what follows, for notational simplicity, a point embedded from a vertex v
in a drawing of a clustered graph may be also denoted by v. For two points pq
and po, the line segment between them is denoted by pip2, and the line passing
through them is denoted by ¢(p1,p2).

2.1 Basic Transformations

In this subsection, we review some operations that can transform a c-planar
convex cluster drawing into another c-planar convex cluster drawing. We use
the following five types of operations.
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Fig. 2. Definition of A(c) of a cluster ¢, A(¢'), q1(c’) and gz2(c’) for a child cluster ¢’ of
c” (thick lines show cycles ex(c’) and ex(c”) for the two child clusters).

Let p = (ps, py) be a point with an a-coordinate p, and a y-coordinate p,, in
the plane.

— Translation with respect to a vector @ = (ag,a,): Move p to a new point
p = (p+as,p+ay).

— Rotation with respect to a real 6 and a reference point r: Rotate p in clock-
wise order by the angle # around r.

— Scaling with respect to a reference point r and v > 0: Scale the line segment
between r and p by factor « fixing the end point 7, i.e., move p to a new
point p’ = (ry + 7 (P = 72), 7y + 7 (Dy — 1))

— One-dimensional scaling with respect to a reference line ¢, and a real v > 0:
Let 7P be the point on ¢ that is closest to p (i.e., pr? L ¢), and move p to a
new point p’ = (78 +y(pz — L), 75 +v(py, —15)).

— Shearing with respect to a reference line ¢ with a head and a tail, and a
real v > 0: Let @ be the unit vector in the direction from the tail to the
head of ¢, and h be the distance of p from ¢. Then move p to a new point
p = (pz+7v-h-az, py+7v-h-ay)if pis on the left side with respect to ¢
with the head upward, or to a new point p’ = (py, —v-h-az, py —7v-h-ay)
otherwise.

For a point p in the plane, let f(p) denote the point obtained by an operation
f in the above. Any operation f in the above is an affine transformation, by
which a given point p = (ps,p,) is projected to a point f(p) = (p},p;) by
(P pyy)t == A~ (P, py)t + b for a 2 x 2 matrix A and a vector b.

For a set P of points, let f(P) denote the set {f(p) | p € P}. We see that for a
set P of points on a line segment p1p2, f(P) is a set of a line segment f(p1) f (p2).
Also, we see that for a set P of corner points of a convex polygon, f(P) is a set
of corner points of some convex polygon, where the points f(p) € f(P) appear in
clockwise order in the same order that they appear around P. This also implies
that, after any transformation, no two edges create a corner point, i.e., no two
edges cross. From these observations, we have the next.



374 H. Nagamochi and K. Kuroya

Lemma 1. Let D be a c-planar convex cluster drawing of a c-planar clustered
graph C. Then the drawing D' obtained from D by applying any of the above five
transformations is also a c-planar convex cluster drawing of C'. O

Note that a point p” = (p}, pj) obtained from a given point p by a sequence
of operations fi, fa, ..., fi is given by (pi/,py)" := A" - (pz, py)" + 0" for adequate
matrix A” and vector b”.

2.2 Drawing for c-Planar Biconnected Clustered Graphs

In the next section, we prove that every c-planar biconnected clustered graph
C = (G, T) such that T is a binary tree admits a c-planar convex cluster drawing.
Our proof is algorithmic and can be implemented to run in polynomial time.

We construct a drawing of a given c-planar cluster graph C' = (G, T) by a
divide-and-conquer approach. Supposing that, for a non-leaf cluster ¢, c-planar
convex cluster drawings D(c’) and D(c¢”) for its child clusters ¢’ and ¢’ are
obtained, we consider how to combine them to obtain a c-planar convex cluster
drawing D(c) for their parent cluster ¢, where we may transform the two drawings
if necessary. However, as shown in Fig. Bl(a), in general two c-planar convex
cluster drawings cannot be transformed by any of the above five operations to
get a desired drawing. To overcome this, we impose a technical constraint on
c-planar convex cluster drawings.

I

Fig. 3. (a) c-planar convex cluster drawings for child clusters ¢’ and ¢”, depicted by
thick lines, which cannot be combined into a c-planar convex cluster drawing for the
parent cluster ¢; (b) a supported c-planar convex cluster drawing with support vertices
s and t.

Let D be a c-planar convex cluster drawing of a clustered graph C'. We say
that a line supports D if it passes through a corner point of the boundary and
all other vertices are situated in one of the half planes divided by the line. We
also say that two parallel lines ¢; and ¢ (¢1 # ¢3) support D if each of the
lines supports the drawing, where the two corner points s and t (resp., their
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corresponding vertices in V') are called support corners of the drawing (resp.,
support vertices) of the clustered graph. We further say that ¢ and ¢y properly
support D if £1 L st.

Definition 3. A c-planar convex cluster drawing is called a supported c-planar
convex cluster drawing if there are two parallel lines {1 and o that properly
support the drawing.

Fig. BIb) illustrates an example of a supported c-planar convex cluster draw-
ing Now we formulate the following problem:

Problem 1. Input: A c-planar clustered graph C' = (G, T') with a planar graph
G embedded in the plane and a binary tree T', and two distinct vertices s and ¢
on the boundary of G.

Output: A supported c-planar convex cluster drawing D(C') of C with support
vertices s and t.

For a leaf ¢ in T, which has no child cluster, a supported c-planar convex
cluster drawing D(c) of G(c) can be easily constructed by a conventional convex
drawing algorithm [I3]. Also if G(c) has at most three vertices, then such a
drawing D(C) is trivially obtained. In the next section, we prove that the problem
can be solved by a divide-and-conquer method.

3 Divide and Conquer

Let C = (G,T) be a c-planar clustered graph with a planar graph G and a
binary tree T'. The clustered graph induced from C by a cluster ¢ is denoted by
C(c) = (G(e),T(c)), where T'(c) is a subtree of T rooted at node c.

Let ¢, denote the root cluster of C. We choose two arbitrary vertices {s,, ¢, }
on the boundary of the outer face of G as a set S(c¢,) of the support vertices
of C. To obtain a supported c-planar convex cluster drawing D(C') of C' with
support vertices s, and t,, we apply the next recursive procedure to (¢, s, t,).

DRAW (¢, s,t)

if cisaleaf in T or |V (c)| < 3 holds then
Return a supported c-planar convex cluster drawing D(c) of C'(¢);

else
Let ¢ and ¢’ be the two child clusters of c;
Determine adequate pairs of support vertices S(¢') = {s’,¢'} and S(¢’) =
{s”,t"} for induces clustered graphs C(¢’) and C(c");
Call DRAW(¢/, ¢/, ') and DRAW(¢”, s”,¢"") to compute supported c-planar
convex cluster drawings D(c’) of C(¢’) and D(¢") of C(c);
Transform D(¢’) and D(c”) into another c-planar convex cluster drawings
respectively by affine transformations f.» and f.» (which are obtained by
sequences of basic transformations) before combining them into a supported
c-planar convex cluster drawing D(c) of C(c);
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Return D(c).
/* end if */

3.1 Dividing Phase

In the dividing phase of our divide-and-conquer procedure DRAW, support ver-
tices of a cluster are determined from the support vertices of its parent cluster in
the following way. Let ¢ be a cluster and S(¢) = {s,t} be the pair of support ver-
tices. We choose the sets of support vertices S(¢’) = {s’,t'} and S(¢”") = {s”,t"}
of its child clusters ¢’ and ¢”. We distinguish the next two cases.

Case-1. One of G(¢’) and G(¢") contains both support vertices in S(c); S(c) C
V() is assumed without loss of generality (see Fig. @la)). Define the pairs S(c')
and S(c”) of support vertices of ¢’ and ¢’ by

si=s, t'i=t, " =q(")and t" = q ().

Case-2. One of the support vertices in S(c¢) belongs to G(¢’) and the other G(¢’’)
(see Fig. @(b)). Define the pairs S(¢’) and S(¢”) of support vertices of ¢ and ¢’
by

s'i=qi(d), ti=qa(d), "= qa(d") and t7 = qi ().

qi(c") ga(c”)

(a) Case-1 (b) Case-2

Fig. 4. Illustration for support vertices, where (a) and (b) indicate Cases-1 and 2,
respectively.

3.2 Combining Phase

In this subsection, we consider the combining phase of DRAW. Suppose that, for
two child clusters ¢ and ¢” of a cluster ¢, we have obtained their supported c-
planar convex cluster drawings D(c¢’) and D(¢) with the support vertices which
have been determined during the dividing phase. We may transform each of the
drawings D(¢’) and D(¢") by some of the basic transformations.
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In what follows, we further assume that |V (¢')| > 3 and |V (¢”")| > 3 (the case
of [V(¢)] <2 or |[V(¢")| < 2 can be treated with a slight modification of the
subsequent argument). It suffices to show that two drawings for child clusters
can be combined so as to meet the following three conditions:

(i) The boundary formed for G(c) is a strict convex polygon.

(ii) Edges in A(c) (i.e., those between G(c¢’) and G(c’)) are drawn by line
segments without creating any intersection with each other or with the
boundaries of G(¢’) and G(¢”).

(iii) There exits a pair of parallel lines that support the drawing for G(c).

In (iii), the parallel lines do not necessarily properly support the drawing since
we can always make them properly support the drawing by applying a shearing
operation with respect to one of the lines.

.

S=5
\ s"=qa(e”)
. v
h Q ¢i(c")
, O gy(c")
I is s
A g

~
Il
-

(@)

Fig. 5. (a) Given supported c-planar convex cluster drawings D(¢’) and D(c”’) in Case 1,
and (b) Combining supported c-planar convex cluster drawings D(c¢’) and D(c”) in
Case 1.

We fix the drawing D(¢’) in the xy-plane so that its supporting lines ¢;, and
¢, are parallel with the z-axis (hence the line segment s't’ is parallel with the
y-axis). Although the other drawing D(¢”) may be transformed before being
combined with D(¢), we temporarily fix D(c’) so that its supporting lines are
parallel with the z-axis. We assume without loss of generality that ¢, and ¢,
pass through point s’ and ¢/, respectively, and that the y-coordinate of s’ (resp.,
q1(c'), s, q2(c”)) is larger than that of ¢’ (resp., g2(¢'), t”, q1(c")).

Let p1,m € ex(c’) (resp., p2,r2 € ex(c’)) be the vertices adjacent to g1(c)
(resp., g2(c’)) such that these vertices appear along the boundary of D(¢') in
the order of p1,q1(c'),r1,p2,q2(¢’) and ro. Define lines ¢, = £(q1 (), 1), b2 =
(q2(c),p2), bs = L(p1,q1(c')) and £y = (12, g2(c’)), where for a technical reason
we set U3 = £y, if q1(¢') = &' (vesp., by =0}, it g1() =t/).
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The other drawing D(¢”’) will be situated in a region Z which is defined below
distinguishing Cases-1 and 2.

Case-1 (See Fig. Bla).) The Z is set to be the region that is above lines ¢;
and ¢4 and below lines /5 and ¢5. We now show how to put D(¢”) inside the Z.
Choose an internal point « (resp., 3) of the line segment induced by Z from ¢3
(resp., {4).

By applying translation, rotation and scaling operations, we put D(¢”) in Z
in such a way that g2(c”) and g1 (c¢”) fall on the points o and 3, respectively. Let
D; be the drawing transformed from D(c”) in this way. Finally we apply to D; a
one-dimensional scaling with respect to line ¢(a, 3) and a sufficiently small real
~ so that all points (except for g2(¢’) and g1 (¢”)) in the drawing D, transformed
from D; are situated properly inside Z (see Fig[|b)). Then a drawing D(c) for
the parent cluster ¢ is set to be the union of D(¢’) and Ds. It is not difficult to
see that the resulting drawing D(c) for C(c) satisfies all conditions (i),(ii) and
(iii) for supporting lines ¢, and £},.

" " l!z
1"=q,(c")

(2a) D(c") (2b) D(c") (2¢) D(c")

Fig. 6. Tllustration for supported c-planar convex cluster drawings D(c’) and D(c”) in
Case 2, where (2a), (2b) and (2c¢) show three subcases for D(c”).

Case-2 (See Fig.[0l) Assume that two support vertices s and ¢ in S(c) belong
to ¢ and ¢”, respectively. Let s; and s2 be the vertices in ex(c¢’) that appear
respectively before and after s when we visit the boundary of G(¢’) in clockwise
order. Let ¢,, (i = 1,2) be the line £(s, s;).

Let t; and t9 be the vertices in ex(¢”) that appear respectively before and af-
ter ¢ when we visit the boundary of G(¢”) in clockwise order, and let £;, = £(t, t;)
(i = 1,2). Then we define lines £7¢/ and £!%" by distinguishing the following three
subcases, where g(¢) for a line ¢ denotes the gradient of ¢.
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(2a) g(fy,) > 0 or £, || s"t" (see Fig.[6(2a)). Then define £"¢/ (resp., £!") to
be a line parallel with 5, (resp., s,).

(2b) g(fs,) > 0 and g(¢,) < 0 (see Fig.[6(2b)). Then define £7¢/ (vesp., £:9") to
be a line parallel with ¢, (resp., £s,).

(2¢) g(fy,) <Oorly, || s"t" (see Fig.[B2c)). Then define £7¢f (resp., /") to be
a line parallel with /5, (resp., {5, ).

We consider case (2a) (the rest of the cases can be treated similarly). Let «
(resp., B) be the intersection of £,.; and ¢}, (resp., £rey and £}). We choose C,. s
so that both « and (8 are strictly above ¢; and below ¢5. Let ¢ = ¢(q1(c), )
and ¢4y = {(q2(c’), ). Then the Z is defined to be the region that is above £} and
¢}, and below ¢4 and ¢j,.

We now show how to put the drawing D(¢”) within the region Z. We first
transform D(c¢”) by applying translation, rotation and scaling operations so
that points g2(¢”") and ¢1(¢”) fall on o and 3, respectively. We next apply one-
dimensional scaling operation to the resulting drawing D; so that all the points
in the drawing except for o = ¢2(¢”) and 3 = ¢1(¢”) are properly contained
in Z and ('™ has a gradient between those of £y, and ¢, (see Fig. [1). Since
line ("¢f = {(a, B) is parallel with £,,, line ¢;, = £(t,t;) will have the gradient
between those of £, and ¢, if D(c¢”") gets enough close to line segment af. Let
D4 be the resulting drawing.

As observed in Case 1, it is not difficult to see that the drawing D(c) obtained
by combining D(c¢’) and Dy meets conditions (i), (i) and (iii) with lines ¢,, and
gton in Dy.

Fig. 7. Combining supported c-planar convex cluster drawings D(c’) and D(c”) in
Case 2.

Each iteration in the dividing and combining phases of DRAW can be exe-
cuted in O(n) time. There are O(]V|) = O(n') such iterations. A naive imple-
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mentation of DRAW takes O(n/n) time. This can be reduced to O(n+n’'log? n').
Note that, to determine f. and f.- in an iteration of the combining phase, we
only need to know the positions of joint nodes of ¢/ and ¢”” and their neighbors
on ex(c’) and ex(c”). All such nodes can be identified in linear time before re-
sorting procedure DRAW. The position of such a node, say ¢;(c¢’) in drawing
D(c’) can be obtained by fi., . (qi(c')) after computing the synthesized affine
transformation
f(cl,c/> = fck © fck,1 ©---0 fC2 © fcla

where ¢; is the leaf cluster containing ¢;1(¢’) and ¢y, co, ..., ck, cpr1(= ') are
the clusters that appear in this order from ¢ to ¢’ in T. The computation can
be executed in O(n’log®n’) time by a technique of pointer jumping and a de-
composition of T' into disjoint paths (the detail is omitted). Once the affine
transformations f., ¢ € V — {¢,} have been determined, the final drawing D(c,)
can be constructed by transforming the points in each leaf cluster ¢’ by f(o c,)
in O(n + n'log®n’) time.
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