
Engineering and Visualizing Algorithms"

Camil Demetrescu1, Irene Finocchi2, and Giuseppe F. Italiano2

1 Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”,

Via Salaria 113, 00198 Roma, Italy. demetres@dis.uniroma1.it,
http://www.dis.uniroma1.it/~demetres/

2 Dipartimento di Informatica, Sistemi e Produzione,
Università di Roma “Tor Vergata”,

Via del Politecnico 1, 00133 Roma, Italy. 
{finocchi,italiano}@disp.uniroma2.it,

http://www.info.uniroma2.it/~{finocchi,italiano}/

Abstract. We discuss some relevant issues in Algorithm Engineering,
focussing on the interplay between theory and practice, and showing
how it can integrate and reinforce the traditional theoretical approaches
to the design and analysis of algorithms and data structures, while de-
vising methodologies and tools for developing and engineering efficient
algorithmic codes.

1 Introduction

The whole process of designing, analyzing, implementing, tuning, debugging and
experimentally evaluating algorithms can be referred to as Algorithm Engineer-
ing. Algorithm Engineering views algorithmics also as an engineering discipline
rather than a purely mathematical discipline. Implementing algorithms and engi-
neering algorithmic codes is a key step for the transfer of algorithmic technology,
which often requires a high-level of expertise, to different and broader communi-
ties, and for its effective deployment in industry and real applications. Moreover,
experiments often raise new conjectures and theoretical questions, opening unex-
plored research directions that may lead to further theoretical improvements and
eventually to more practical algorithms. Theoretical breakthroughs that answer
fundamental algorithmic questions are a crucial step towards the solution of a
problem. However, they often lead to algorithms that are far from efficient im-
plementations, raising the question of whether more practical solutions exist. We
believe that Algorithm Engineering should take into account the whole process,
from the early design stage to the realization of efficient implementations.

" Work partially supported by the IST Programmes of the EU under contract numbers
IST-1999-14186 (ALCOM-FT) and IST-2001-33555 (COSIN), and by the Italian
Ministry of University and Scientific Research (Project “ALINWEB: Algorithmics
for Internet and the Web”).

509

G. Liotta (Ed.): GD 2003, LNCS 2912, pp. 509−513, 2004.
 Springer-Verlag Berlin Heidelberg 2004



An important aspect of algorithm engineering, usually referred to as Exper-
imental Algorithmics, is related to performing empirical studies for comparing
actual relative performance of algorithms so as to study their amenability for use
in specific applications. This may lead to the discovery of algorithm separators,
i.e., families of problem instances for which the performances of solving algo-
rithms are clearly different, and to identifying and collecting problem instances
from the real world. Other important results of empirical investigations include
assessing heuristics for hard problems, characterizing the asymptotic behavior
of complex algorithms, discovering the speed-up achieved by parallel algorithms
and studying the effects of the memory hierarchy and of communication on real
machines, thus helping in predicting performance and finding bottlenecks in real
systems. Another goal of algorithm engineering is to define standard methodolo-
gies and realistic computational models. For instance, there is more and more
interest in defining models for the memory hierarchy and for Web algorithmics.
Issues related to Web algorithmics are received a lot of attention, as the Internet
is nowadays a primary motivation for several problems: security infrastructure,
Web caching, Internet searching and information retrieval are just a few of the
hot topics. Devising realistic models for the Internet and Web graphs is thus
essential for testing the algorithmic solutions proposed in this settings.

2 Algorithm Engineering and Visualization

Algorithms must be implemented and tested in order to have a practical im-
pact. Experiments can help measure practical indicators, such as implementa-
tion constant factors, real-life bottlenecks, locality of references, cache effects and
communication complexity, that may be extremely difficult to predict theoreti-
cally. We remark here that locality and cache effects are particularly important
for graph algorithms: graphs are typically de-localized and pointer-based data
structures. Many clear examples of the value of the experimentation for graph
algorithms are addressed in the literature: among them, the implementation is-
sues of the push-relabel algorithm for the maximum flow problem by Goldberg
and Tarjan [9] stand out.

Unfortunately, as in any empirical science, it may be sometimes difficult
to draw general conclusions about algorithms from experiments. Towards this
aim, some researchers have proposed accurate and comprehensive guidelines on
different aspects of the empirical evaluation of algorithms maturated from their
own experience in the field (see, for example [1, 14, 15, 18]). The interested reader
may find in [17] an annotated bibliography of experimental algorithmics sources
addressing methodology, tools and techniques.

Among the tools useful in algorithm engineering, we cite visualization sys-
tems, which exploit interactive graphics to enhance the development, presenta-
tion, and understanding of computer programs [21]. Thanks to the capability of
conveying a large amount of information in a compact form that is easily perceiv-
able by a human observer, visualization systems can help developers gain insight
about algorithms, test implementation weaknesses, and tune suitable heuristics

510 C. Demetrescu, I. Finocchi, and G.F. Italiano



for improving the practical performances of algorithmic codes. Some examples
of this kind of usage are described in [11].

Systems for algorithm animation have matured significantly since the rise
of modern computer graphic interfaces and dozens of algorithm animation sys-
tems have been developed in the last two decades [2–8, 10, 12, 16, 19, 20, 22]. For
a comprehensive survey we refer the interested reader to [13, 21] and to the ref-
erences therein. In the following we limit to discuss the features of algorithm
visualization systems that appear to be most appealing for their deployment in
engineering algorithms.

From the viewpoint of the algorithm developer, it is desirable to rely on
systems that offer visualizations at a high level of abstraction. Namely, one would
be more interested in visualizing the behavior of a complex data structure, such
as a graph, than in obtaining a particular value of a given pointer.

Fast prototyping of visualizations is another fundamental issue: algorithm
designers should be allowed to create visualization from the source code at hand
with little effort and without heavy modifications. At this aim, reusability of
visualization code could be of substantial help in speeding up the time required
to produce a running animation.

One of the most important aspects of algorithm engineering is the develop-
ment of libraries. It is thus quite natural to try to interface visualization tools
to algorithmic software libraries: libraries should offer default visualizations of
algorithms and data structures that can be refined and customized by developers
for specific purposes.

Software visualization tools should be able to animate not just “toy pro-
grams”, but significantly complex algorithmic codes, and to test their behavior
on large data sets. Unfortunately, even those systems well suited for large in-
formation spaces often lack advanced navigation techniques and methods to
alleviate the screen bottleneck. Finding a solution to this kind of limitations is
nowadays a challenge.

Advanced debuggers take little advantage of sophisticated graphical displays,
even in commercial software development environments. Nevertheless, software
visualization tools may be very beneficial in addressing problems such as finding
memory leaks, understanding anomalous program behavior, and studying per-
formance. In particular, environments that provide interpreted execution may
more easily integrate advanced facilities in support to debugging and perfor-
mance monitoring, and many recent systems attempt at exploring this research
direction.

There is a general consensus that algorithm visualization systems can strongly
benefit from the potentialities offered by the World Wide Web. Indeed, the use of
the Web for easy communication, education, and distance learning can be natu-
rally considered a valid support for improving the cooperation between students
and instructors, and between algorithm engineers.

511Engineering and Visualizing Algorithms



3 Concluding Remarks

Algorithm engineering refers to the process of designing, analyzing, implement-
ing, tuning, debugging, and experimentally evaluating algorithms. It refines and
reinforces the traditional theoretical approach with experimental studies, fitting
the general models and techniques used by theoreticians to actual existing ma-
chines and leading to robust and efficient implementations of algorithms and
data structures that can be used by non-experts. Trends in engineering algo-
rithms include the following. First of all, programs should be considered as first
class citizens: going from efficient algorithms to programs is not a trivial task
and the development of algorithmic libraries may be helpful for this. Further-
more, in may applications seconds matter, and thus experimentation can add
new insights to theoretical analyses. Moreover, current computing machines are
far away from RAMs: if algorithms are to have a practical utility, issues such
as effects of the memory hierarchy (cache, external memory), implications of
communication complexity, numerical precision must be considered. Machine
architecture, compiler optimization, operating system, programming language
are just a few of the technical issues that may substantially affect the execution
performance. Algorithmic software libraries, tools for algorithm visualization,
program checkers, generators of test sets for experimenting with algorithms may
be of great help throughout this process.

References

1. R. Anderson. The role of experiment in the theory of algorithms. In Proceedings
of the 5th DIMACS Challenge Workshop, 1996. Available over the Internet at the
URL: http://www.cs.amherst.edu/~dsj/methday.html.

2. J.E. Baker, I. Cruz, G. Liotta, and R. Tamassia. A  New Model for Algorithm
Animation over the WWW. ACM Computing Surveys, 27(4):568–572, 1996.

3. J.E. Baker, I. Cruz, G. Liotta, and R. Tamassia. Animating Geometric Algorithms
over the Web. In Proceedings of the 12th Annual ACM Symposium on Computa-
tional Geometry, pages C3–C4, 1996.

4. J.E. Baker, I. Cruz, G. Liotta, and R. Tamassia. The Mocha Algorithm Animation
System. In Proceedings of the 1996 ACM Workshop on Advanced Visual Interfaces,
pages 248–250, 1996.

5. R.S. Baker, M. Boilen, M.T. Goodrich, R. Tamassia, and B. Stibel. Testers and
visualizers for teaching data structures. SIGCSEB: SIGCSE Bulletin (ACM Special
Interest Group on Computer Science Education), 31, 1999.

6. M.H. Brown. Algorithm Animation. MIT Press, Cambridge, MA, 1988.
7. M.H. Brown. Zeus: a System for Algorithm Animation and Multi-View Editing.

In Proceedings of the 7-th IEEE Workshop on Visual Languages, pages 4–9, 1991.
8. G. Cattaneo, G.F. Italiano, and U. Ferraro-Petrillo. CATAI: Concurrent Al-

gorithms and Data Types Animation over the Internet. Journal of Visual
Languages and Computing, 13(4):391–419, 2002. System Home Page:
http://isis.dia.unisa.it/catai/.

9. B.V. Cherkassky and A.V. Goldberg. On implementing the push-relabel method
for the maximum flow problem. Algorithmica, 19:390–410, 1997.

512 C. Demetrescu, I. Finocchi, and G.F. Italiano



10. P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi. Reversible Execution 
and Visualization of Programs with Leonardo. Journal of Visual Languages and 
Computing, 11(2), 2000. System home page:
http://www.dis.uniroma1.it/~demetres/Leonardo/.

11. C. Demetrescu, I. Finocchi, G.F. Italiano, and S. Naeher. Visualization in algo-
rithm engineering: Tools and techniques. In Dagstuhl Seminar on Experimental
Algorithmics 00371. Springer Verlag, 2001.

12. C. Demetrescu, I. Finocchi, and G. Liotta. Visualizing Algorithms over the Web
with the Publication-driven Approach. In Proc. of the 4-th Workshop on Algorithm
Engineering (WAE’00), LNCS 1982, pages 147–158, 2000.

13. S. Diehl. Software Visualization. LNCS 2269. Springer Verlag, 2001.
14. A.V. Goldberg. Selecting problems for algorithm evaluation. In Proc. 3-rd Work-

shop on Algorithm Engineering (WAE 99), LNCS 1668, pages 1–11, 1999.
15. D. Johnson. A theoretician’s guide to the experimental analysis of algorithms. In

Proceedings of the 5th DIMACS Challenge Workshop, 1996. Available over the
Internet at the URL: http://www.cs.amherst.edu/~dsj/methday.html.

16. A. Malony and D. Reed. Visualizing Parallel Computer System Performance. In M.
Simmons, R. Koskela, and I. Bucher, editors, Instrumentation for Future Parallel
Computing Systems, pages 59–90. ACM Press, 1999.

17. C. McGeoch. A  bibliography of algorithm experimentation. In Proceedings of the
5th DIMACS Challenge Workshop, 1996. Available over the Internet at the URL:
http://www.cs.amherst.edu/~dsj/methday.html.

18. B.M.E. Moret. Towards a discipline of experimental algorithmics. In Proceedings
of the 5th DIMACS Challenge Workshop, 1996. Available over the Internet at the
URL: http://www.cs.amherst.edu/~dsj/methday.html.

19. G.C. Roman, K.C. Cox, C.D. Wilcox, and J.Y Plun. PAVANE: a System for Declar-
ative Visualization of Concurrent Computations. Journal of Visual Languages and
Computing, 3:161–193, 1992.

20. J.T. Stasko. Animating Algorithms with X-TANGO. SIGACT News, 23(2):67–71,
1992.

21. J.T. Stasko, J. Domingue, M.H. Brown, and B.A. Price. Software Visualization:
Programming as a Multimedia Experience. MIT Press, Cambridge, MA, 1997.

22. A. Tal and D. Dobkin. Visualization of Geometric Algorithms. IEEE Transactions
on Visualization and Computer Graphics, 1(2):194–204, 1995.

513Engineering and Visualizing Algorithms




